www.basicsinmaths.com

TS Inter Maths 1A - 4 Marks Important Questions

Matrices

1. If $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $E=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ then show that $(a I+b E)^{3}=a^{3} I+3 a^{2} b E$
2. If $\theta-\emptyset=\frac{\pi}{2}$, then show that $\left[\begin{array}{cc}\cos ^{2} \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta\end{array}\right]\left[\begin{array}{cc}\cos ^{2} \emptyset & \cos \emptyset \sin \emptyset \\ \cos \emptyset \sin \emptyset & \sin ^{2} \emptyset\end{array}\right]=0$
3. If $A=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$, then for any integer $n \geq 1$ show that $A^{n}=\left[\begin{array}{cc}1+2 n & -4 n \\ n & 1-2 n\end{array}\right]$
4. If $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$, then show that \forall positive integers $A^{n}=\left[\begin{array}{cc}\cos n \theta & \sin n \theta \\ -\sin n \theta & \cos n \theta\end{array}\right]$
5. If $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$ then show that $A^{2}-4 A-5 I=0$
6. If $A=\left[\begin{array}{cc}2 & -4 \\ -5 & 3\end{array}\right]$ then find $A+A^{T}, A . A^{T}$
7. If $\mathrm{A}=\left[\begin{array}{ccc}2 & -1 & 2 \\ 1 & 3 & -4\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}1 & -2 \\ -3 & 0 \\ 5 & 4\end{array}\right]$ then verify $(\mathrm{AB})|=\mathrm{B}| \mathrm{A} \mid$
8. If $A=\left[\begin{array}{cc}7 & -2 \\ -1 & 2 \\ 5 & 3\end{array}\right]$ and $B=\left[\begin{array}{cc}-2 & -1 \\ 4 & 2 \\ -1 & 0\end{array}\right]$ then find $A B \mid$ and $B A \mid$
9. If $A=\left[\begin{array}{lll}1 & 4 & 7 \\ 2 & 5 & 8\end{array}\right], B=\left[\begin{array}{ccc}-3 & 4 & 0 \\ 4 & -2 & -1\end{array}\right]$ then prove that $(A+B)^{T}=A^{T}+B^{T}$
10. Find the value of x if $\left|\begin{array}{lcc}x-2 & 2 x-3 & 3 x-4 \\ x-4 & 2 x-9 & 3 x-16 \\ x-8 & 2 x-27 & 3 x-64\end{array}\right|=0$
11. Show that $\left|\begin{array}{lll}b c & b+c & 1 \\ c a & c+a & 1 \\ a b & a+b & 1\end{array}\right|=(a-b)(b-c)(c-a)$
12. Show that $\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|=(a-b)(b-c)(c-a)$
13. Show that $\left|\begin{array}{ccc}y+z & x & x \\ y & z+x & y \\ z & z & x+y\end{array}\right|=4 x y z$
14. If $A=\left[\begin{array}{lll}2 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 2 & 1\end{array}\right]$ then find the adjoint and inverse of A
15. If $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 2 & 3 \\ 1 & 1 & 2\end{array}\right]$ then find A^{-1}
16. If $\mathrm{A}=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$ then show that $\mathrm{A}^{-1}=\mathrm{A}^{3}$
17. If $A=\left[\begin{array}{ccc}-1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{array}\right]$ then show that adjoint $A=3$ Al. Find A^{-1}
18. If A and B are invertible then show that $A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$
19. Show that the determinant of skew symmetric matrix of order 3 is alway 2 s zero

Addition of Vectors

1. Let $A B C D E F$ be a regular hexagon with center 0 . Show that
$\overline{\mathrm{AB}}+\overline{\mathrm{AC}}+\overline{\mathrm{AD}}+\overline{\mathrm{AE}}+\overline{\mathrm{AF}}=3 \overline{\mathrm{AD}}=6 \overline{\mathrm{AO}}$
2. In $\triangle A B C$ if O is the circum Centre and H is the orthocenter, then shoe that
(i) $\overline{\mathrm{AO}}+\overline{\mathrm{OB}}+\overline{\mathrm{OC}}=\overline{\mathrm{OH}}$
(ii) $\overline{\mathrm{HA}}+\overline{\mathrm{HB}}+\overline{\mathrm{HC}}=2 \overline{\mathrm{HO}}$
3. In the two-dimensional plane, prove by using vector method the equation of the line whose intercepts are a and b is $\frac{x}{a}+\frac{y}{b}=1$
4. $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are non - coplanar vectors. Prove that the following four points are coplanar $-\bar{a}+4 \bar{b}-3 \bar{c}, 3 \bar{a}+2 \bar{b}-5 \bar{c},-3 \bar{a}+8 \bar{b}-5 \bar{c},-3 \bar{a}+2 \bar{b}+\bar{c}$
5. $\bar{a}, \bar{b}, \bar{c}$ are non - coplanar vectors. Prove that the following four points are coplanar $6 \bar{a}+2 \bar{b}-\bar{c}, 2 \bar{a}-\bar{b}+3 \bar{c},-\bar{a}+2 \bar{b}-4 \bar{c},-12 \bar{a}-\bar{b}-3 \bar{c}$
6. If the points whose position vectors are $3 \bar{i}-2 \bar{j}-\bar{k}, 2 \bar{i}+3 \bar{j}-4 \bar{k},-\bar{i}+\bar{j}+2 \bar{k}$ and $4 \bar{i}+5 \bar{j}+\lambda \bar{k}$ are coplanar, then show that $\lambda=\frac{-146}{17}$
7. If $\overline{\mathrm{i}}, \overline{\mathrm{j}}, \overline{\mathrm{k}}$ are unit vectors along the positive direction of the coordinate axes, then show that the four points are $3 \overline{\mathrm{i}}-2 \overline{\mathrm{j}}-\overline{\mathrm{k}}, 2 \overline{\mathrm{i}}+3 \overline{\mathrm{j}}-4 \overline{\mathrm{k}},-\overline{\mathrm{i}}+\overline{\mathrm{j}}+2 \overline{\mathrm{k}}$ and $4 \overline{\mathrm{i}}+5 \overline{\mathrm{j}}+\lambda \overline{\mathrm{k}}$ are coplanar
8. Find the vector equation of the plane passing through the points $4 \bar{i}-3 \bar{j}-\bar{k}, 3 \bar{i}+7 \bar{j}-10 \bar{k}$, and $2 \bar{i}+5 \overline{\mathrm{j}}-7 \overline{\mathrm{k}}$ and show that the point $\overline{\mathrm{i}}+2 \overline{\mathrm{j}}-3 \overline{\mathrm{k}}$ lies in the plane.
9. Show that the line joining the pair of points $6 \bar{a}-4 \bar{b}+4 \bar{c},-4 \bar{c}$ and the line joining the points $-\bar{a}-2 \bar{b}-3 \bar{c}, \bar{a}+2 \bar{b}-5 \bar{c}$ intersects at the point $-4 \bar{c}$ when $\bar{a}, \bar{b}, \bar{c}$ are non - coplanar vectors.
10. If $\bar{a}, \bar{b}, \bar{c}$ are non - coplanar find the point of intersection of the line passing through the points $2 \bar{a}+3 \bar{b}-\bar{c}, 3 \bar{a}+4 \bar{b}-2 \bar{c}$ with the line joining the points $\bar{a}-2 \bar{b}+3 \bar{c}, \bar{a}-6 \bar{b}+6 \bar{c}$
11. If $\bar{a}+\bar{b}+\bar{c}=\alpha \bar{d}, \quad \bar{b}+\bar{c}+\bar{d}=\beta \bar{a}$ and $\bar{a}, \bar{b}, \bar{c}$ are non - coplanar vectors, then show that, $\bar{a}+\bar{b}+\bar{c}+\bar{d}=0$.
12. Let \bar{a}, \bar{b} are non - collinear vectors. If $\bar{\alpha}=(x+4 y) \bar{a}+(2 x+y+1) \bar{b}$ and $\bar{\beta}=(y-2 x+2) \bar{a}+(2 x-3 y-1) \bar{b}$ are such that $3 \bar{\alpha}=2 \bar{\beta}$ then find x and y.
13. If $\bar{a}, \bar{b}, \bar{c}$ are non - coplanar vectors, then test for the collinearity of the points $3 \bar{a}-4 \bar{b}+3 \bar{c}$, $-4 \overline{\mathrm{a}}+5 \overline{\mathrm{~b}}-6 \overline{\mathrm{c}}, 4 \overline{\mathrm{a}}-7 \overline{\mathrm{~b}}+6 \overline{\mathrm{c}}$.

Product of Vectors

1. Prove that the smaller angle θ between any two diagonals of a cube is given by $\cos \theta=1 / 3$. Find unit vector perpendicular to the plane passing through the points $A(1,2,3), B(2,3,1)$ and $C(3,1,2)$.
2. Find the unit vector perpendicular to the plane passing through the points $(1,2,3),(2,-1,1)$ and ($1,2,-4$).
3. Find the unit vector perpendicular to the plane determined by the points $P(1,-1,2), Q(2,0,-1)$ and $R=(0,2,1)$.
4. Find the volume of tetrahedron whose vertices are $(1,2,1),(3,2,5),(2,-1,0)$ and $(-1,0,1)$.
5. Find the volume of tetrahedron having edges $\bar{i}+\bar{j}+\bar{k}, \bar{i}-\bar{j}$ and $\bar{i}+2 \bar{j}+\bar{k}$.
6. Find the volume of parallelepiped whose contaminate edges are represented by the vectors $2 \bar{i}-3 \bar{j}+\bar{k}, \bar{i}-\bar{j}+2 \bar{k}$ and $2 \bar{i}+\bar{j}-\bar{k}$.
7. Determine λ, for which the volume of parallelepiped having contaminate edges $\bar{i}+\bar{j}, 3 \bar{i}-\bar{j}$ and $3 \bar{j}+\lambda \bar{k}$.
8. If $\bar{a}=2 \bar{i}+3 \bar{j}+4 \bar{k}, \bar{b}=\bar{i}+\bar{j}-\bar{k}$ and $\bar{c}=\bar{i}-\bar{j}+\bar{k}$, then compute $\bar{a} \times(\bar{b} \times \bar{c})$ and verify that it is perpendicular to \bar{a}.
9. If $\bar{a}=\bar{i}-2 \bar{j}-3 \bar{k}, \bar{b}=2 \bar{i}+\bar{j}-\bar{k}$ and $\bar{c}=\bar{i}+3 \bar{j}-2 \bar{k}$, then verify that $\bar{a} \times(\bar{b} \times \bar{c}) \neq(\bar{a} \times \bar{b}) \times \bar{c}$
10. If $\bar{a}+\bar{b}+\bar{c}=0,|\bar{a}|=3,|\bar{b}|=5$ and $|\bar{c}|=7$ then find the angle between \bar{a} and \bar{b}
11. Let $\overline{\mathrm{a}}=4 \overline{\mathrm{i}}+5 \overline{\mathrm{j}}-\overline{\mathrm{k}}, \overline{\mathrm{b}}=\overline{\mathrm{i}}-4 \overline{\mathrm{j}}+5 \overline{\mathrm{k}}$ and $\overline{\mathrm{c}}=3 \overline{\mathrm{i}}+\overline{\mathrm{j}}-\overline{\mathrm{k}}$. Find the vector which is perpendicular to both \bar{a} and \bar{b} whose magnitude is twenty one times the magnitude \bar{c}
12. Find λ, in order that the four points $A(3,2,1), B(4, \lambda, 5), C(4,2,-2)$ and $D(6,5,-1)$ be coplanar.
13. If $\bar{a}=2 \bar{i}+\bar{j}-\bar{k}, \bar{b}=-\bar{i}+2 \bar{j}-4 \bar{k}$ and $\bar{c}=\bar{i}+\bar{j}+\bar{k}$, then find $(\bar{a} \times \bar{b}) \cdot(\bar{b} \times \bar{c})$.
14. If $\bar{a}=3 \bar{i}-\bar{j}+2 \bar{k}, \bar{b}=-\bar{i}+3 \bar{j}+2 \bar{k}, \bar{c}=4 \bar{i}+5 \bar{j}-2 \bar{k}$ and $\bar{d}=\bar{i}+3 \bar{j}+5 \bar{k}$, then find the following: (i) $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(\overline{\mathrm{c}} \times \overline{\mathrm{d}}) \quad$ (ii) $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \cdot \overline{\mathrm{c}}-(\overline{\mathrm{a}} \times \overline{\mathrm{d}}) \cdot \overline{\mathrm{b}}$
15. Show that the angle in a semicircle is right angle.

Trigonometric Ratios Up To Transformations

1. Prove that $\frac{\tan \theta+\sec \theta-1}{\tan \theta-\sec \theta+1}=\frac{1+\sin \theta}{\cos \theta}$
2. If A is not multiple of $\frac{\pi}{2}$, then prove that (i) $\tan A+\cot A=2 \operatorname{cosec} 2 A$

$$
\text { (ii) } \cot \mathrm{A}-\tan \mathrm{A}=2 \cot 2 \mathrm{~A}
$$

3. Let $A B C$ be a triangle such that $\cot A+\cot B+\cot C=\sqrt{3}$, then prove that $\triangle A B C$ is an equilateral triangle.
4. Prove that $\tan 70^{\circ}-\tan 20^{\circ}=2 \tan 50^{\circ}$.
5. Prove that $\sin \frac{\pi}{5} \sin \frac{2 \pi}{5} \sin \frac{3 \pi}{5} \sin \frac{4 \pi}{5}=\frac{5}{16}$.
6. If $A+B=45^{\circ}$, then prove that (i) $(1+\tan A)(1+\tan B)=2$

$$
\text { (ii) }(\cot \mathrm{A}-1)(\cot \mathrm{B}-1)=2
$$

7. If $A+B=\frac{3 \pi}{4}$, then prove that $(1-\tan A)(1+\tan B)=2$
8. Prove that $\left(1+\cos \frac{\pi}{10}\right)\left(1+\cos \frac{3 \pi}{10}\right)\left(1+\cos \frac{7 \pi}{10}\right)\left(1+\cos \frac{9 \pi}{10}\right)=\frac{1}{16}$
9. Prove that $\cos \frac{2 \pi}{7} \cdot \cos \frac{4 \pi}{7} \cdot \cos \frac{8 \pi}{7}=\frac{1}{8}$.
10. Prove that $\cos \frac{\pi}{11} \cdot \cos \frac{2 \pi}{11} \cdot \cos \frac{3 \pi}{11} \cdot \cos \frac{4 \pi}{11} \cdot \cos \frac{5 \pi}{11}=\frac{1}{32}$.
11. If $0<A<B<\frac{\pi}{4} \sin (A+B)=\frac{24}{25}, \cos (A-B)=\frac{4}{5}$ then find the value of $\tan 2 A$.
12. Prove that $\sqrt{3} \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}=4$
13. Prove that $\cos ^{4} \frac{\pi}{8}+\cos ^{4} \frac{3 \pi}{8}+\cos ^{4} \frac{5 \pi}{8}+\cos ^{4} \frac{7 \pi}{8}=\frac{3}{2}$
14. Prove that $\sin ^{4} \frac{\pi}{8}+\sin ^{4} \frac{3 \pi}{8}+\sin ^{4} \frac{5 \pi}{8}+\sin ^{4} \frac{7 \pi}{8}=\frac{3}{2}$
15. If $3 A$ is not an odd multiple of $\frac{\pi}{2}$, prove that $\tan A \tan (60-A) \tan (60+A)=\tan 3 A$ and hence find the value of $\tan 6^{0} \tan 42^{0} \tan 66^{\circ} \tan 78^{\circ}$.
16. If A is not an integral multiple of π prove that $\cos A \cos 2 A \cos 4 A \cos 8 A=\frac{\sin 16 A}{16 \sin A}$ and hence deduce that cos
17. $\sin \mathrm{A} \sin (60-\mathrm{A}) \sin (60+\mathrm{A})=\frac{1}{4} \sin 3 \mathrm{~A}$ and hence deduce that
$\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ}=\frac{3}{16}$
18. For $A \in R$, prove that $\cos A \cos (60-A) \cos (60+A)=\frac{1}{4} \cos 3 A$ and hence deduce that $\cos \frac{\pi}{9} \cos \frac{2 \pi}{9} \cos \frac{3 \pi}{9} \cos \frac{4 \pi}{9}=\frac{1}{16}$.
19. If none of the denominators is $\frac{2 \pi}{15} \cos \frac{4 \pi}{15} \cos \frac{8 \pi}{15} \cos \frac{16 \pi}{15}=\frac{1}{16}$.
20. For $A \in R$, prove that zero, then prove that

$$
\left(\frac{\cos A+\cos B}{\sin A-\sin B}\right)^{n}+\left(\frac{\sin A+\sin B}{\cos A-\cos B}\right)^{n}=\left\{\begin{array}{l}
2 \cot ^{n}\left(\frac{A-B}{2}\right) \text { if } n \text { is even } \\
0 \text { if } n \text { is odd }
\end{array}\right.
$$

21. If $\sec (\theta+\alpha)+\sec (\theta-\alpha)=2 \sec \theta$ and $\cos \alpha \neq 1$, then show that $\cos \theta= \pm \sqrt{2} \cos \frac{\alpha}{2}$

Trigonometric Equations

1. Solve the equation $\sqrt{3} \sin \theta-\cos \theta$
2. Find the value of x in $(-\pi, \pi)$ satisfying the equation $8^{1+\cos x+\cos ^{2} x+\cdots}=4^{3}$
3. If θ_{1}, θ_{2} are solution of the equation $\cos 2 \theta+b \sin \theta+=c, \tan \theta_{1} \neq \tan \theta_{2}$ and $\mathrm{a}+\mathrm{c} \neq 0$ then find the values of
(i) $\tan \theta_{1}+\tan \theta_{2}$
(ii) $\tan \theta_{1} \cdot \tan \theta_{2}$
(ii) $\tan \left(\theta_{1}+\theta_{2}\right)$
4. Solve and write the general solution of the equation $2 \cos ^{2} \theta-\sqrt{3} \sin \theta+1=0$
5. Solve and write the general solution of the equation $\sqrt{2}(\sin x+\cos x)=\sqrt{3}$
6. Solve and write the general solution of the equation $\tan \theta+\cot \theta+1=5 \sec \theta$
7. Solve $1+\sin ^{2} \theta=3 \sin \theta \cos \theta$
8. Solve $\sin x+\sqrt{3} \cos x=\sqrt{2}$
9. Solve the equation $\cot ^{2} x-(\sqrt{3}+1) \cot x+\sqrt{3}=0\left(0<x<\frac{\pi}{2}\right)$
10. Solve $\sin 2 x-\cos 2 x=\sin x-\cos x$
11. Solve $4 \sin x \sin 2 x \sin 4 x=\sin 3 x$
12. If $\tan (\pi \cos \theta)=\cot (\pi \sin \theta)$, then prove that $\cos \left(\theta-\frac{\pi}{4}\right)= \pm \frac{1}{2 \sqrt{2}}$
13. Given $p \neq \pm q$, show that the solution of $\cos p \theta+\cos q \theta$ from two series each of which in A.P. Also find the common difference of A.P.
14. Given $\tan p \theta+\cot q \theta$ and $p \neq \pm q$, show that the solutions are in A.P. with common difference $\frac{\pi}{a+b}$
15. Solve and write the general solution of the equation
$4 \cos ^{2} \theta+\sqrt{3}=2(\sqrt{3}+1) \cos \theta$
16. Solve $\cos 3 x+\cos 2 x=\sin \frac{3 x}{2}+\sin \frac{x}{2} \quad(0 \leq x \leq 2 \pi)$
17. Solve $\tan \theta+\sec \theta=\sqrt{3} \quad(0 \leq \theta \leq 2 \pi)$
18. Solve $\sin 3 \alpha=4 \sin \alpha \sin (\mathrm{x}+\alpha) \sin (\mathrm{x}-\alpha)$ where $\alpha \neq \mathrm{n} \pi, \mathrm{n} \in \mathrm{Z}$

Inverse Trigonometric Functions

1. Prove that $\operatorname{Tan}^{-1} \frac{1}{2}+\operatorname{Tan}^{-1} \frac{1}{5}+\operatorname{Tan}^{-1} \frac{1}{8}=\frac{\pi}{4}$
2. Find the value of $\tan \left[\operatorname{Cos}^{-1} \frac{4}{5}+\operatorname{Tan}^{-1} \frac{2}{3}\right]$
3. Solve the equation $3 \operatorname{Sin}^{-1} \frac{2 x}{1+x^{2}}-4 \operatorname{Cos}^{-1} \frac{1-x^{2}}{1+x^{2}}+2 \operatorname{Tan}^{-1} \frac{2 x}{1-x^{2}}=\frac{\pi}{3}$
4. If $\operatorname{Sin}^{-1} x+\operatorname{Sin}^{-1} y+\operatorname{Sin}^{-1} z=\pi$, then prove that

$$
x \sqrt{1-x^{2}}+y \sqrt{1-y^{2}}+z \sqrt{1-z^{2}}=2 x y z
$$

5. Prove that $\operatorname{Sin}^{-1} \frac{4}{5}+\operatorname{Sin}^{-1} \frac{7}{25}=\operatorname{Sin}^{-1} \frac{117}{125}$
6. Prove that $\operatorname{Sin}^{-1} \frac{3}{5}+\operatorname{Sin}^{-1} \frac{8}{17}=\operatorname{Cos}^{-1} \frac{36}{85}$
7. Prove that $\operatorname{Sin}^{-1} \frac{4}{5}+\operatorname{Tan}^{-1} \frac{1}{3}=\frac{\pi}{2}$
8. Prove that $\operatorname{Sin}^{-1} \frac{4}{5}+\operatorname{Sin}^{-1} \frac{5}{13}+\sin ^{-1} \frac{16}{65}=\frac{\pi}{2}$
9. Show that $\cot \left(\operatorname{Sin}^{-1} \sqrt{\frac{13}{17}}\right)=\sin \left(\operatorname{Tan}^{-1} \frac{2}{3}\right)$
10. Prove that $\operatorname{Cos}^{-1} \frac{4}{5}+\operatorname{Sin}^{-1} \frac{3}{\sqrt{34}}=\operatorname{Tan}^{-1} \frac{27}{11}$
11. Prove that $\sin \left[\operatorname{Cot}^{-1} \frac{2 x}{1-x^{2}}+\operatorname{Cos}^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)\right]=1$
12. Show that $\sec ^{2}\left(\operatorname{Tan}^{-1} 2\right)+\operatorname{cosec}^{2}\left(\operatorname{Cot}^{-1} 2\right)=10$
13. If $\operatorname{Cos}^{-1} p+\operatorname{Cos}^{-1} q+\operatorname{Cos}^{-1} r=\pi$, then prove that $p^{2}+q^{2}+r^{2}+2 p q r=1$
14. If Tan ${ }^{-1} x+\operatorname{Tan}^{-1} y+\operatorname{Tan}^{-1} z=\pi$, then prove that $x+y+z=x y z$
15. If $\operatorname{Tan}^{-1} x+\operatorname{Tan}^{-1} y+\operatorname{Tan}^{-1} z=\frac{\pi}{2}$, then prove that $x y+y z+z x=1$
16. If $\operatorname{Cos}^{-1} \frac{p}{a}+\operatorname{Cos}^{-1} \frac{q}{b}=\alpha$, then prove that $\frac{p^{2}}{q^{2}}-\frac{2 p q}{a b}+\frac{q^{2}}{b^{2}}=\sin ^{2} \alpha$
17. Solve the equation $\operatorname{Tan}^{-1} \frac{x-1}{x-2}+\operatorname{Tan}^{-1} \frac{x+1}{x+2}=\frac{\pi}{4}$
18. Prove that $\cos \left[\operatorname{Tan}^{-1}\left\{\sin \left(\operatorname{Cot}^{-1} x\right)\right\}\right]=\sqrt{\frac{x^{2}+1}{x^{2}+2}}$
19. Prove that $\operatorname{Tan}^{-1} \frac{3}{4}+\operatorname{Tan}^{-1} \frac{3}{5}-\operatorname{Tan}^{-1} \frac{8}{19}=\frac{\pi}{4}$
20. Solve $\operatorname{Sin}^{-1} \mathrm{x}+\operatorname{Sin}^{-1} 2 \mathrm{x}=\frac{\pi}{3}$

Properties of Triangles

1. Show that $\cot \mathrm{A}+\cot \mathrm{B}+\cot \mathrm{C}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}{4 \Delta}$
2. Show that $\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}=\frac{s^{2}}{\Delta}$
3. If $\cot \frac{\mathrm{A}}{2}: \cot \frac{\mathrm{B}}{2}: \cot \frac{\mathrm{C}}{2}=3: 5: 7$, then show that $\mathrm{a}: \mathrm{b}: \mathrm{c}=6: 5: 4$
4. Show that in $\triangle A B C, a=b \cos C+c \cos B$
5. Show that in $\triangle \mathrm{ABC}, \tan \left(\frac{\mathrm{B}-\mathrm{C}}{2}\right)=\frac{\mathrm{b}-\mathrm{c}}{\mathrm{b}+\mathrm{c}} \cot \frac{\mathrm{A}}{2}$
6. If $\mathrm{C}=60^{\circ}$, then show that (i) $\frac{a}{b+c}+\frac{a}{b+c}=1$
(ii) $\frac{b}{c^{2}-a^{2}}+\frac{a}{c^{2}-b^{2}}=0$
7. In $\triangle A B C$, if $\frac{1}{a+c}+\frac{1}{b+c}=\frac{3}{a+b+c}$, then show that $C=60^{\circ}$
8. If $a=(b-c) \sec \theta$, then prove that $\tan \theta=\frac{2 \sqrt{b c}}{b-c} \sin \frac{A}{2}$
9. If $a=(b+c) \cos \theta$, then prove that $\tan \theta=\frac{2 \sqrt{b c}}{b+c} \cos \frac{A}{2}$
10. If $\sin \theta=\frac{a}{b+c}$, then prove that $\cos \theta=\frac{2 \sqrt{b c}}{b+c} \cos \frac{A}{2}$
11. In $\triangle A B C$, show that $\tan \frac{b^{2}-c^{2}}{a^{2}}=\frac{\sin (B-C)}{\sin (B+C)}$
12. Show that $\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}=\frac{a^{2}+b^{2}+c^{2}}{2 a b c}$
13. Show that $\cos A+\cos B+\cos C=1+\frac{r}{R}$
14. Show that $\frac{1}{\mathrm{r}^{2}}+\frac{1}{\mathrm{r}_{1}{ }^{2}}+\frac{1}{\mathrm{r}_{2}{ }^{2}}+\frac{1}{\mathrm{r}_{3}{ }^{2}}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}{\Delta^{2}}$
15. Show that $(b-c)^{2} \cos ^{2} \frac{A}{2}+(b+c)^{2} \sin ^{2} \frac{A}{2}=a^{2}$
16. Show that $a^{2} \cot A+b^{2} \cot B+c^{2} \cot C=\frac{a b c}{R}$
17. If $\mathrm{a}: \mathrm{b}: \mathrm{c}=7: 8: 9$, then find $\cos \mathrm{A}: \operatorname{Cos} \mathrm{B}: \operatorname{Cos} \mathrm{C}$
18. If $\cot \frac{A}{2}, \cot \frac{B}{2}, \cot \frac{C}{2}$ are in AP, then prove that a, b, c are in $A P$
19. Show that $b^{2} \sin 2 C+c^{2} \sin 2 B=2 b c \sin A$
20. If $\left(r_{2}-r_{1}\right)\left(r_{3}-r_{1}\right)=2 r_{1} r_{3}$, then show that $A=90^{\circ}$
