PART - A

$$
\text { SECTION }-\mathrm{I}(6 \times 2=12)
$$

1. If A and B are disjoint sets, then how can you find $n(A \cup B)$?

Answer:

By definition of disjoint set we mean that there won't be any common elements in both the sets.
$\Rightarrow \mathrm{n}(\mathrm{A} \cap \mathrm{B})=0$
In general, $n(A \cup B)=n(A)+n(B)-n(A \cap B)$
Since A and B are disjoint sets, $n(A \cap B)=0$
$n(A \cup B)=n(A)+n(B)$
2. Write the formula of $\mathrm{n}^{\text {th }}$ term of G.P. and explain the terms in it.

Answer:

$$
\mathrm{a}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}
$$

a is the first term of GP
r is the common ratio
n is the no. of terms of GP
a_{n} is the $n^{\text {th }}$ term of GP
3. Find the volume of the right circular cone with a radius 6 cm and height 7 cm .

Answer:
Here,
$\mathrm{r}=6 \mathrm{~cm}$ and $\mathrm{h}=7 \mathrm{~cm}$
Volume of right circular cone $=\frac{1}{3} \pi r^{2} h$

$$
\begin{aligned}
& =\frac{1}{3} \times \frac{22}{7} \times 6 \times 6 \times 7 \\
& =\frac{1}{3} \times 22 \times 36 \\
& =264 \mathrm{~cm}^{3}
\end{aligned}
$$

4. Calculate $\frac{1-\tan ^{2} 45}{1+\tan ^{2} 45}$

Answer:
$\frac{1-\tan ^{2} 45}{1+\tan ^{2} 45}=\frac{1-(1)^{2}}{1+(1)^{2}}=\frac{0}{1}=0$
5. Write two examples for equally likely events.

Answer:
Tossing a coin. $=>$ Head and tails have equal chances.
Rolling a dice. $=>$ All faces have equal chances.
6. The product of two consecutive positive integers is 306 . Find the integers

Answer:
Let two consecutive numbers are x and $(\mathrm{x}+1)$
product of x and $(x+1)=306$
$\Rightarrow x(x+1)=306$
$\Rightarrow x^{2}+\mathrm{x}-306=0$
$\Rightarrow \mathrm{x}^{2}+18 \mathrm{x}-17 \mathrm{x}-306=0$
$\Rightarrow x(x+18)-17(x+18)=0$
$\Rightarrow(x+18)(x-17)=0 \Rightarrow x=17$ and -18
Hence, numbers are $x=17$ and $(x+1)=18$

$$
\text { SECTION - II }(6 \times 4=24)
$$

7. If $A=\{x: x$ is a prime and $x<10\}, B=\{x: x$ is a factor of 6$\}$, then find $A \cap B, A \cup B, A-B$ and $B-A$. Answer:
$A=\{2,3,5,7\}, B=\{1,2,3,6\}$
$A U B=\{2,3,5,7\} \cup\{1,2,3,6\}$

$$
=\{1,2,3,5,6,7\}
$$

$\therefore \mathrm{AUB}=\{1,2,3,5,6,7\}$
$A \cap B=\{2,3,5,7\} \operatorname{i} \cap\{1,2,3,6\}$
$=\{2,3\}$
Therefore $\mathrm{A} \cap \mathrm{B}=\{2,3\}$
$A-B=\{2,3,5,7\}-\{1,2,3,6\}$
$\therefore \mathrm{A}-\mathrm{B}=\{5,7\}$
8. For what value of ' m ' in the following, $m x+4 y=10$ and $9 x+12 y=20$ system of equations will have no solution? why?
Answer:
Given equations $m x+4 y=10$ and $9 x+12 y=20$ have no solution
$\Rightarrow \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}$
$\Rightarrow \frac{m}{9}=\frac{4}{12}$
$\Rightarrow 12 \mathrm{~m}=36 \Rightarrow \mathrm{~m}=3$
9. If the distance between two points $(8, x)$ and $(x, 8)$ is $2 \sqrt{2}$ units, then find the value of x. Answer:
$\sqrt{(8-x)^{2}+(x-8)^{2}}=2 \sqrt{2}$
$\sqrt{2(x-8)^{2}}=2 \sqrt{2}$
Squaring on both sides
$2(x-8)^{2}=(2 \sqrt{2})^{2}$
$2(x-8)^{2}=8$
$(x-8)^{2}=4$
$\mathrm{x}-8= \pm 2$
$x-8=2$ or $x-8=-2$
Hence, the required value of $x=10$ and $x=6$.
10. From an external point, two tangents are drawn to a circle. A line joining the external point and the center of the circle bisects the angle between the tangents. Is this true or not? Justify your answer.
Answer:
It Is true,
Let $P Q$ and $P R$ are two tangents drawn from a point P exterior of the circle with centre 0 join OQ and $O R$
in $\triangle O Q P$ and $\triangle O Q R$
$O Q=O R$ (radii of the same circle)
$\angle O Q P=\angle O R P=90^{\circ}$
$\mathrm{OP}=\mathrm{OP}$ (common side)
By RHS congruency
$\triangle \mathrm{OQP} \cong \triangle \mathrm{OQR}$
$\angle \mathrm{OPQ}=\angle \mathrm{OPR}$ (by CPCT)
$\therefore \mathrm{OP}$ is the angle bisector of $\angle \mathrm{QPR}$

Hence, A line joining the external point and the center of the circle bisects the angle between the tangents.
11. What is the probability of a number picked from first twenty natural numbers is even composite number?
Answer:
The composite even numbers up to 20 are-
4,6,8,10,12,14,16,18,20
Total number of even composite numbers up to $20=9$
Therefore,
Total number of possible outcomes $=20$
No. of favourable outcomes $=9$
\therefore Probability of selecting a even composite number $=\frac{9}{20}$
12. Find the median of the first 6 prime numbers.

Answer:

The first 6 prime numbers are $2,3,5,7,11$ and 13 .
Total number of observations, $n=6$ (Even)
Median $=($ Value of 3rd observation + Value of 4th observation $) / 2$

$$
\begin{aligned}
& =(5+7) / 2 \\
& =12 / 2
\end{aligned}
$$

\therefore Median $=6$
13. Use Euclid's division lemma to show that the square of any positive integer of the form $5 n, 5 n+1$ or $5 n+4$
Answer:
Let 'a' be any positive integer and $\mathrm{b}=5$.
Using Euclid Division Lemma,
$a=b q+r \quad[0 \leq r<b]$
$\Rightarrow \mathrm{a}=5 \mathrm{q}+\mathrm{r} \quad[0 \leq \mathrm{r}<5]$
Now, possible value of r :
$r=0, r=1, r=2, r=3, r=4$
CASE I :
If we take, $r=0$
$\Rightarrow \mathrm{a}=5 \mathrm{q}+0$
$\Rightarrow \mathrm{a}=5 \mathrm{q}$
On squaring both sides;
$\Rightarrow a^{2}=(5 q)^{2}$
$\Rightarrow \mathrm{a}^{2}=25 \mathrm{q}^{2}$
$\Rightarrow \mathrm{a}^{2}=5\left(5 \mathrm{q}^{2}\right)$
$\Rightarrow \mathrm{a}^{2}=5 \mathrm{n}$. [Here, $\mathrm{n}=5 \mathrm{q}^{2}$]
CASE II :
If we take, $r=1$
$\Rightarrow \mathrm{a}=5 \mathrm{q}+1$
On squaring both sides;
$\Rightarrow a^{2}=(5 q+1)^{2}$
$\Rightarrow a^{2}=25 q^{2}+10 q+1$
$\Rightarrow \mathrm{a}^{2}=5\left(5 q^{2}+2 q\right)+1$
$\Rightarrow \mathrm{a}^{2}=5 \mathrm{n}+1 \quad$ [Here, $\left.\mathrm{n}=5 \mathrm{q}^{2}+2 \mathrm{q}\right]$
CASE III:
If we take, $r=2$
$\Rightarrow \mathrm{a}=5 \mathrm{q}+2$
On squaring both sides;
$\Rightarrow \mathrm{a}^{2}=(5 \mathrm{q}+2)^{2}$
$\Rightarrow a^{2}=25 q^{2}+20 q+4$
$\Rightarrow \mathrm{a}^{2}=5\left(5 \mathrm{q}^{2}+4 \mathrm{q}\right)+4$
$\Rightarrow \mathrm{a}^{2}=5 \mathrm{n}+4$ [Here, $\mathrm{n}=5 \mathrm{q}^{2}+4 \mathrm{q}$]
CASE IV:
If we take, $r=3$
$\Rightarrow \mathrm{a}=5 \mathrm{q}+3$
On squaring both sides;
$\Rightarrow \mathrm{a}^{2}=(5 \mathrm{q}+3)^{2}$
$\Rightarrow \mathrm{a}^{2}=25 \mathrm{q}^{2}+30 \mathrm{q}+5+4$
$\Rightarrow \mathrm{a}^{2}=5\left(5 \mathrm{q}^{2}+6 \mathrm{q}+1\right)+4$
$\Rightarrow \mathrm{a}^{2}=5 \mathrm{n}+4$ [Here, $\mathrm{n}=5 \mathrm{q}^{2}+6 \mathrm{q}+1$]
CASE V :
If we take, $r=4$
$\Rightarrow \mathrm{a}=5 \mathrm{q}+4$
On squaring both sides;

Steps of Construction:

1) Draw a triangle ABC with $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=7 \mathrm{~cm}$ and $\angle \mathrm{ABC}=50^{\circ}$.
2) Draw a ray $A X$ such that $\angle B A X$ is an acute angle.
3) Draw $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$ arcs on $A X$ such that $A,=A_{1} A_{2}=\ldots A_{4} A_{5}$
4) Join A_{5} and B.
5) Draw a parallel line to $A_{5} B$ through A_{4} to meet $A B$ at B^{\prime}.
6) Draw a parallel line to BC through B^{\prime} to meet AC at C^{\prime}.
7) $\Delta A B^{\prime} C^{\prime}$ is required similar triangle.
18. A person from the top of a building of height 15 m the top and bottom of a cell tower with the angle elevation as 60° and the angle of depression as 45° respectively. Find the height of the cell tower.
Answer :
Let $A B$ is the building of height 15 m
CE is the tower
$\angle E A D=60^{\circ}$
$\angle \mathrm{DAC}=\angle \mathrm{BCA}=45^{\circ}$
In $\triangle \mathrm{ABC}$
$\tan 45^{\circ}=\frac{\mathrm{AB}}{\mathrm{BC}}$
$1=\frac{15}{B C}$
$\mathrm{BC}=15 \mathrm{~m}$
$\Rightarrow \mathrm{AD}=15 \mathrm{~m}$
In $\triangle \mathrm{ADE}$
$\tan 60^{\circ}=\frac{\mathrm{ED}}{\mathrm{AD}}$
$\sqrt{3}=\frac{\mathrm{ED}}{15}$
$\mathrm{ED}=15 \sqrt{3} \mathrm{~m}$
Height of the tower $=C E=C D+D E$

$$
\begin{aligned}
& =15 \mathrm{~m}+15 \sqrt{3} \mathrm{~m} \\
& =15(1+\sqrt{3}) \mathrm{m} \\
& =15(1+1.732) \mathrm{m} \\
& =15(2.732) \mathrm{m}=40.98 \mathrm{~m}
\end{aligned}
$$

