## www.basicsinmaths.com





# Mathematics

## **SOLVED QUESTION PAPERS - 4**





**SOLVED QUESTION PPAPER - 4** 

**SUBJECT: MATHEMATICS** 

TIME: 3Hrs

#### CLASS: X

TOTAL MARKS: 80



 $= \frac{4}{3} \times \frac{22}{7} \times (2.8)^{3}$   $= \frac{4}{3} \times \frac{22}{7} \times 2.8 \times 2.8 \times 2.8$   $= \frac{4}{3} \times 22 \times 2.8 \times 2.8 \times 0.4$   $= \frac{275.968}{3} = 91.99 \text{ cm}^{3}$ 6. If A = 60°, B = 30° then is it right to say sin (A + B) = sin A + sin B? Answer:

Given A = 60°, B = 30° LHS = sin (A + B) = sin (600 + 30°) = sin (90°) = 1 RHS = sin 60° + sin 30° =  $\frac{\sqrt{3}}{2} + \frac{1}{2}$ =  $\frac{\sqrt{3} + 1}{2}$ LHS ≠ RHS sin (A + B) ≠ sin A + sin B

### SECTION – II $(6 \times 4 = 24)$

MS. COY

## **7.** If $\log (1 + \tan \theta + \sec \theta) + \log (1 + \cot \theta + \csc \theta) = \log k$ , then find the value of k. **Answer:**

Given  $\log (1 + \tan \theta + \sec \theta) + \log (1 + \cot \theta + \csc \theta) = \log k$ 

 $\log (1 + \tan \theta + \sec \theta) (1 + \cot \theta + \csc \theta) = \log k$   $(1 + \tan \theta + \sec \theta) (1 + \cot \theta + \csc \theta) = k$   $\left(1 + \frac{\sin \theta}{\cos \theta} + \frac{1}{\cos \theta}\right) \left(1 + \frac{\cos \theta}{\sin \theta} + \frac{1}{\sin \theta}\right) = k$   $\left(\frac{\cos \theta + \sin \theta + 1}{\cos \theta}\right) \left(\frac{\sin \theta + \cos \theta - 1}{\sin \theta}\right) = k$   $\frac{(\cos \theta + \sin \theta)^2 - 1^2}{\sin \theta \cos \theta} = k$   $\frac{\sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta - 1}{\sin \theta \cos \theta} = k$   $\frac{1 + 2\sin \theta \cos \theta}{\sin \theta \cos \theta} = k$   $\frac{2\sin \theta \cos \theta}{\sin \theta \cos \theta} = k$  k = 2

8. Write the formula for mode of a grouped data and explain each term of it.Answer:

Mode =  $l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$ Where l = lower boundary of modal class  $f_0$  = frequency of the class preceding the modal class  $f_1$  = frequency of the modal class  $f_2$  = frequency of the class succeeding the modal class h = class size



 $x^{2} + 2x + 1$  divides  $x^{4} - 2x^{3} - 4x^{2} + 2x + 3$  exactly





#### SECTION – III $(4 \times 6 = 24)$

#### 13. Find the mean for the following data

| C.I | 60 - 70 | 70 - 80 | 80 - 90 | 90 - 100 | 100 - 110 | 110 - 120 | 120 - 130 |
|-----|---------|---------|---------|----------|-----------|-----------|-----------|
| f   | 2       | 5       | 12      | 31       | 36        | 10        | 4         |

**Answer:** 

| C.I       | f                  | х                   | $\mathbf{d}_{\mathrm{i}} = \mathbf{x}_{\mathrm{i}} - \mathbf{a}$ | $\mu_{i}$ | $f_i \mu_i$             |
|-----------|--------------------|---------------------|------------------------------------------------------------------|-----------|-------------------------|
| 60 - 70   | 2                  | 65                  | - 30                                                             | - 3       | - 6                     |
| 70 - 80   | 5                  | 75                  | - 20                                                             | - 2       | - 10                    |
| 80 - 90   | 12                 | 85                  | - 10                                                             | - 1       | - 12                    |
| 90 - 100  | 31                 | 95 <mark>(a)</mark> | 0                                                                | 0         | 0                       |
| 100 - 110 | 36                 | 105                 | 10                                                               | 1         | 36                      |
| 110 - 120 | 10                 | 115                 | 20                                                               | 2         | 20                      |
| 120 - 130 | 4                  | 125                 | 30                                                               | 3         | 12                      |
|           | $\Sigma f_i = 100$ |                     |                                                                  |           | $\Sigma f_i \mu_i = 40$ |

 $\overline{x} = a + \frac{\sum f_i \mu_i}{\sum f_i} \times h$  $\overline{x} = 95 + \frac{40}{100} \times 10$  $\overline{x} = 95 + \frac{40}{10}$ = 95 + 4= 99

 $\therefore$  mean of the given data is 99

#### 1+ sinθ $\tan \theta + \sec \theta$ 14. Prove that tan θ

 $-\sec\theta+1$ cosθ

Answer:

 $\tan \theta + \sec \theta - 1$  $\tan \theta + \sec \theta - (\sec^2 \theta - \tan^2 \theta)$  $\tan \theta - \sec \theta + 1$  $\tan \theta - \sec \theta + 1$  $\tan \theta + \sec \theta - (\sec \theta + \tan \theta)(\sec \theta - \tan \theta)$  $\tan \theta - \sec \theta + 1$  $(\tan \theta + \sec \theta)[1 - (\sec \theta - \tan \theta)]$  $\tan \theta - \sec \theta + 1$   $(\tan \theta + \sec \theta) [1 - \sec \theta + \tan \theta)]$  $\tan \theta - \sec \theta + 1$  $= \tan \theta + \sec \theta$  $= \frac{\sin\theta}{\cos\theta} + \frac{1}{\cos\theta}$  $=\frac{1+\sin\theta}{1+\sin\theta}$ cosθ

Hence proved





$$x^{2} = 5n + 4 [ Here, n = 5q^{2} + 6q + 1 ]$$
CASE V:  
If we take  $r = 4$   
 $\Rightarrow a = 5q + 4$   
On squaring both sides;  
 $= a^{2} = (5q) + 4)^{2}$   
 $= a^{2} = (5q) + 4)^{2}$   
 $= a^{2} = (5q) + 4(3) + 1$   
 $= a^{2} = 5(5q^{2} + 40q + 15 + 1)$   
 $= a^{2} = 5(5q^{2} + 40q + 15 + 1)$   
 $= a^{2} = 5(5q^{2} + 40q + 15 + 1)$   
 $= a^{2} = 5(5q^{2} + 40q + 15 + 1)$   
 $= a^{2} = 5(5q^{2} + 40q + 15 + 1)$   
 $= a^{2} = 5(5q^{2} + 40q + 15 + 1)$   
 $= a^{2} = 5(5q^{2} + 40q + 15 + 1)$   
 $= a^{2} = 5(5q^{2} + 40q + 15 + 1)$   
 $= a^{2} = 5(5q^{2} + 40q + 15 + 1)$   
Hence, the square of any integer is either of the form 5m, 5m + 1 or 5m + 4 for some integer m.  
**16.** Solve  $\frac{2}{x_{1}} + \frac{3}{y_{12}} = 2$  and  $\frac{3}{x_{1}} + \frac{3}{y_{21}} = \frac{13}{6}$   
Answer:  
Given equations are  $\frac{2}{x_{1}} + \frac{3}{y_{21}} = 2$  and  $\frac{3}{x_{1}} + \frac{2}{y_{21}} = \frac{13}{6}$   
 $= 16a + 12b = 13$ ....(2)  
Equation (1) × 4 - Equation (2)  
 $8a + 12b = 43$   
 $= 16a + 12b = 4$   
 $16a + 12b = 4$   
 $= 16a + 12b +$ 

Let the points be A(4, -1) and B(-2, -3). Let P ( $x_1$ ,  $y_1$ ) and Q ( $x_2$ ,  $y_2$ ) be the points of trisection of the line segment joining the given points. Then, AP = PC = CBBy Section formula,

\$

..ŝ

- (v) Mark the midpoint of OP as M.
- (vi) Taking OM or PM as radius draw a circle with M as center.
- (vii) Name the points A and B where the circle with center M intersects the Circle with center O.
- (viii) Join PA and PB.

\*\*\*

ŝ.

\*\*\*\*

...ŝ

| RIM                                                                  | ************************************             | ***************************************               | ********************************** |                                                                                             |
|----------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------|
| Basics in Mathe                                                      | PA                                               | RT – B                                                |                                    | in Telugu                                                                                   |
| Chose the correct answe                                              | er                                               |                                                       | 20                                 | x 1=20                                                                                      |
| 1 The value of k for which                                           | h the system of equativ                          | and 4y + y = 2and 9y + 2                              | 20<br>Du — Elchac infinita         | // I-20                                                                                     |
| solutions                                                            | in the system of equation                        | $\sin 4x + y = 5 \sin 0 0x + 2$                       | Ly – SK has minnte                 | (c)                                                                                         |
| a) $\frac{-5}{-5}$                                                   | b) $\frac{-6}{-6}$                               | c) $\frac{5}{-}$                                      | d) <del>6</del>                    |                                                                                             |
| 2. Which of the following                                            | statement is not true?                           | 6                                                     | 5                                  | (c)                                                                                         |
| a) $\sin \theta = \sqrt{1 - \cos^2 \theta}$                          |                                                  | b) $\sec^2 \theta - \tan^2 \theta = 1$                |                                    |                                                                                             |
| c) $\cos \theta \times \csc \theta = 1$                              |                                                  | d) tan $\theta \times \cot \theta = 1$                |                                    |                                                                                             |
| 3. The logarithmic form of                                           | of $7^x = 3$ is                                  |                                                       |                                    | ( b)                                                                                        |
| a) $\log_x 3 = 7$                                                    | b) $\log_7 3 = x$                                | c) $\log_3 7 = x$                                     | d) $\log_7 x = 3$                  | Y                                                                                           |
| 4. The decimal form of $\frac{3}{8}$                                 | is                                               |                                                       |                                    | ( d )                                                                                       |
| a) 3.75                                                              | b) 37.05                                         | c) 0.0375                                             | d) 0.375                           |                                                                                             |
| 5. If 72, 63, 54 is an A                                             | Ari thematic progressi                           | on, then the term that be                             | ecomes zero in it is               | ( c)                                                                                        |
| a) 11 <sup>m</sup><br>6 The equal set of $\Delta = \{x\}$            | D) 10 <sup>th</sup><br>ty is a letter of the wor | C) 9 <sup>m</sup><br>cld "FOLLOW"}                    | d) 8 <sup>th</sup>                 | (2)                                                                                         |
| a) {F, L, O, W}                                                      | b){F, L, L, O, W}                                | c) {F, 0, 0, L, W}                                    | d) {F, O, O, L, L, W               | }                                                                                           |
| 7. If $n(A - B) = 5$ , $n(B - A)$                                    | $(A) = 7$ and $(A \cap B) =$                     | = 3, then n (A $\cup$ B) is                           |                                    | ,<br>(d)                                                                                    |
| a) 9                                                                 | b) 10                                            | c) 12                                                 | d) 15                              |                                                                                             |
| 8. Among the following, th                                           | e value which is not p                           | ossible for the probabilit                            | ty of an event is                  | (d)                                                                                         |
| a) $\frac{1}{3}$                                                     | b) 0.5                                           | c) 25%                                                | d) $\frac{1}{3}$                   |                                                                                             |
| 9. Among the following, a                                            | linear polynomial is                             |                                                       |                                    | (a)                                                                                         |
| a) $3x^2 + 2x - 4$<br>10 If $p(x) - x^2 - 2x + 2$ th                 | b) $2X + 3$                                      | c) 5                                                  | d) $x^3 - 3x^2 + 5$                | $(\mathbf{d})$                                                                              |
| a) 2                                                                 | h) 1                                             | 03                                                    | 0 (b                               | (u)                                                                                         |
| 11. The discriminant of $x^2$                                        | +x+1=0 is                                        |                                                       |                                    | (b)                                                                                         |
| a) - 2                                                               | b) – 3                                           | c) – 1                                                | d) -4                              |                                                                                             |
| 12. A quadratic equation v                                           | whose roots are – 2 an                           | d – 3 is                                              |                                    | (b)                                                                                         |
| a) $X^2 - 5X - 6$<br>13 If the product of the 15                     | b) $X^2 + 5X + 6$<br>at 5 torms of a CP is 24.   | C) X <sup>2</sup> + 5X -6<br>3 then its third side is | d) $x^2 - 5x + 6$                  |                                                                                             |
| a) 9                                                                 | b) 27                                            | c) 3                                                  | d) 1                               |                                                                                             |
| 14. LCM of numbers $2^7 \times$                                      | $3^4 \times 7$ and $2^3 \times 3^4 \times 1$     | 1 is                                                  |                                    | (a)                                                                                         |
| a) $2^7 \times 3^4 \times 7 \times 11$                               | b) $2^3 \times 3^7 \times 11$                    | c) $2^3 \times 3^4 \times 7$                          | d) $2^4 \times 3^7 \times 7$       |                                                                                             |
| 15. In an AP $n^{th}$ term is $a_n$                                  | = a + (n - 1) d, in this                         | formula 'd' represents                                | 1)                                 | (d)                                                                                         |
| a) no. of terms<br>16. If sin $A = \cos A$ (00 < 1                   | b) common ratio $(4 - 900)$ then the value       | c) first term<br>$a of 1 \pm tan A$ is                | d) common differ                   | ence                                                                                        |
| a) 2                                                                 | b) 0                                             | c) 3                                                  | d) 1                               | (a)                                                                                         |
| 17. If the radius of a cylind                                        | der is doubled and its l                         | height is halved, then the                            | volume of new cyl                  | inder                                                                                       |
| formed is                                                            |                                                  |                                                       |                                    | ( c )                                                                                       |
| a) 4 times the value of 1                                            | l <sup>st</sup> cylinder                         | b) 3times the va                                      | alue of 1 <sup>st</sup> cylinder   |                                                                                             |
| c) Ztimes the value of 1<br>18. If F and $\overline{F}$ are two corr | st cylinder                                      | a) volume rema                                        | $F_{\rm P}(E) = 0.07$ then         | tho valuo                                                                                   |
| of P ( $\overline{E}$ ) is                                           | ipienieniai y events III                         | מ זמוועטווו כגףכו ווופוונ. וו                         | 1 (L) = 0.07, mem                  | (b)                                                                                         |
| a) 0.83                                                              | b) 0.93                                          | c) 0.63                                               | d) 0.83                            |                                                                                             |
| 19. The mean of 9 observation                                        | ation is 45. In doing so                         | , if an observation was w                             | vrongly taken as 42                | for 24,                                                                                     |
| then the correct mean                                                | of the data is                                   | \ <b>07</b>                                           |                                    | (b)                                                                                         |
| a) 34                                                                | b) 43                                            | c) 37                                                 | d) $45$                            | aluma af                                                                                    |
| 20. Base radii and heights                                           | s of a cylinder and cone                         | e ore equal. volume of co                             | one is 90, then the v              | oiume of                                                                                    |
| a) 27u                                                               | b) 37u                                           | c) 9u                                                 | d) 36u                             | (α)                                                                                         |
|                                                                      | ,                                                | ·                                                     | ,                                  | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| X                                                                    | Nayini Satyanarayana                             | Reddy (Satyam) – M. <u>Sc., Be</u>                    | d. Maths                           |                                                                                             |