TS INTER MATHS -1A

 Model Papers

MATHS - IA

MODEL PAPER - 1
TOTAL MARKS: 75
TIME: 3hrs.

I. Very short answer type questions

 $10 \times 2=20$1. If $A=\left\{0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}\right\}$ and $f: A \rightarrow B$ is a surjection defined by $f(x)=\cos x$, find B.
2. Find the domain and range of the function $\frac{1}{\log (2-x)}$.
3. Find the inverse and adjoint of matrix $\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$
4. If $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 2 & 3 & 4 \\ 5 & -6 & x\end{array}\right]$ and $\operatorname{det} A=45$ then find x.
5. Let $\overline{\mathrm{OA}}=\overline{\mathrm{i}}+\overline{\mathrm{j}}+\overline{\mathrm{k}}, \overline{A B}=3 \overline{\mathrm{i}}-2 \overline{\mathrm{j}}+\overline{\mathrm{k}}, \overline{B C}=\overline{\mathrm{i}}+2 \overline{\mathrm{j}}-2 \overline{\mathrm{k}}$ and $\overline{C D}=2 \overline{\mathrm{i}}+\overline{\mathrm{j}}+3 \overline{\mathrm{k}}$, then find the vector $\overline{\mathrm{OD}}$.
6. Find the vector equation of the line joining the points $2 \overline{\mathrm{i}}+\overline{\mathrm{j}}+3 \overline{\mathrm{k}}$ and $-4 \overline{\mathrm{i}}+3 \overline{\mathrm{j}}-\overline{\mathrm{k}}$
7. If the vectors $\lambda \overline{\mathrm{i}}-3 \overline{\mathrm{j}}+5 \overline{\mathrm{k}}, 2 \lambda \overline{\mathrm{i}}-\lambda \overline{\mathrm{j}}-\overline{\mathrm{k}}$ are perpendicular to each other then find the value of λ.
8. Prove that $\frac{1}{\sin 10^{\circ}}-\frac{\sqrt{3}}{\cos 10^{\circ}}=4$.
9. Find cosine function whose period is 7 .
10. If $\cos h x=\sec \theta$ then prove that $\tanh ^{2} \frac{x}{2}=\tan ^{2} \frac{\theta}{2}$
II. Short answer type questions
$5 \times 4=20$
11. If $3 A=\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1\end{array}\right]$ then show that $A^{-1}=A^{T}$.
12. Show that the line joining the pair of points $6 \bar{a}-4 \bar{b}+4 \bar{c},-4 \bar{c}$ and the line joining the pair of points $-\bar{a}-2 \bar{b}-3 \bar{c}$ and $\bar{a}+2 \bar{b}-5$ cintersects at the point $-4 \bar{c}$ when $\bar{a}, \bar{b}, \bar{c}$ are non - coplanar vectors.
13. Prove that angle between two diagonals of a cube is given by $\cos \theta=\frac{1}{3}$.
14. Prove that $\cos ^{4} \frac{\pi}{8}+\cos ^{4} \frac{3 \pi}{8}+\cos ^{4} \frac{5 \pi}{8}+\cos ^{4} \frac{7 \pi}{8}=\frac{3}{2}$.
15. Solve: $1+\sin ^{2} \theta=3 \sin \theta \cdot \cos \theta$
16. Find the value of $\tan \left(\cos ^{-1} \frac{4}{5}+\tan ^{-1} \frac{2}{3}\right)$.
17. $\sin \theta=\frac{a}{b+c}$, then prove that $\cos \theta=\frac{2 \sqrt{b c}}{b+c} \cos \frac{A}{2}$.
III. Long answer type questions
18. If $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}, \mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ are two bijective functions then prove that gof $: A \longrightarrow \mathrm{C}$ is bijective function.
19. Using the principle of mathematical induction prove that $49^{n}+16 n-1$ is divisible by $64 \forall \mathrm{n} \in \mathrm{Z}^{+}$.
20. Show that $\left|\begin{array}{ccc}a+b+2 c & a & b \\ c & b+c+2 a & b \\ c & a & c+a+2 b\end{array}\right|=2(a+b+c)^{3}$.
21. Solve the following system of equations by using matrix inversion method $x+y+z=1,2 x+2 y+3 z=6, x+4 y+9 z=3$.
22. Let $\bar{a}, \bar{b}, \bar{c}$ be three vectors, then show that $(\bar{a} \times \bar{b}) \times \bar{c}=(\bar{a} \cdot \bar{c}) \bar{b}-(\bar{b} \cdot \bar{c}) \bar{a}$ and $\bar{a} \times(\bar{b} \times \bar{c})=(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}) \overline{\mathrm{b}}-(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}) \overline{\mathrm{c}}$.

23 . If $A+B+C=2 S$, then prove that

$$
\cos (S-A)+\cos (S-B)+\cos (S-C)+\cos S=4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}
$$

24. If $r_{1}=2, r_{2}=3, r_{3}=6$ and $r=1$, then prove that $a=3, b=4$ and $c=5$.

算

I. Very short answer type questions

$10 \times 2=20$

1. If $f(x)=2 x-1, g(x)=\frac{x+1}{2} \forall x \in R$ then find (i) (gof) (x) (ii) (fog) (x).
2. Find the domain of the real valued function $f(x)=\sqrt{4-x^{2}}$
3. If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right]$ and $B=\left[\begin{array}{lll}3 & 2 & 1 \\ 1 & 2 & 3\end{array}\right]$ then find $3 B-2 A$.
4. If $\mathrm{A}=\left[\begin{array}{ccc}0 & 2 & 1 \\ -2 & 0 & -2 \\ -1 & x & 0\end{array}\right]$ is a skew symmetric matrix, then find the value of x .
5. If $\overline{\mathrm{a}}=2 \overline{\mathrm{i}}+5 \overline{\mathrm{j}}+\overline{\mathrm{k}}$ and $\overline{\mathrm{b}}=4 \overline{\mathrm{i}}+\mathrm{m} \overline{\mathrm{j}}+\mathrm{n} \mathrm{\bar{k}}$ are collinear vectors then find the values of m and n.
6. Find the vector equation of the plane which passes through the points $2 \overline{\mathrm{i}}+4 \overline{\mathrm{j}}+2 \overline{\mathrm{k}}$, $2 \overline{\mathrm{i}}+3 \overline{\mathrm{j}}+5 \overline{\mathrm{k}}$ and parallel to the vector $3 \overline{\mathrm{i}}-2 \overline{\mathrm{j}}+\overline{\mathrm{k}}$.
7. Find the angle between the planes $r \cdot(2 \overline{\mathrm{i}}-\overline{\mathrm{j}}+2 \overline{\mathrm{k}})=3$ and $\mathrm{r} \cdot(3 \overline{\mathrm{i}}+6 \overline{\mathrm{j}}+\overline{\mathrm{k}})=4$.
8. If $\cos \theta+\sin \theta=\sqrt{2} \cos \theta$, then prove that $\cos \theta-\sin \theta=\sqrt{2} \sin \theta$
9. Find the period of the function $f(x)=\cos \left(\frac{4 x+9}{5}\right)$.
10. If $\sinh x=\frac{3}{4}$ then find $\cosh 2 x$ and $\sinh 2 x$.

II. Short answer type questions

 $5 \times 4=20$11. If $\mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $\mathrm{E}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ then show that $(\mathrm{aI}+\mathrm{bE})^{3}=\mathrm{a}^{3} \mathrm{I}+3 \mathrm{a}^{2} \mathrm{~b}$.
12. $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are non - coplanar vectors. Prove that the following four points are coplanar $-\bar{a}+4 \bar{b}-3 \bar{c}, 3 \bar{a}+2 \bar{b}-5 \bar{c},-3 \bar{a}+8 \bar{b}-5 \bar{c}$ and $-3 \bar{a}+2 \bar{b}+\bar{c}$
13. Find the unit vector perpendicular to the plane passing through the points $(1,2,3),(2,-1,1)$ and $(1,2,-4)$.
14. Prove that $\left(1+\cos \frac{\pi}{10}\right)\left(1+\cos \frac{3 \pi}{10}\right)\left(1+\cos \frac{7 \pi}{10}\right)\left(1+\cos \frac{9 \pi}{10}\right)=\frac{1}{16}$
15. If $0<\theta<\pi$, solve $\cos \theta \cos 2 \theta \cos 3 \theta=\frac{1}{4}$.
16. Prove that $\sin ^{-1} \frac{3}{5}+\sin ^{-1} \frac{8}{17}=\cos ^{-1} \frac{36}{85}$.
17. In $\Delta \mathrm{ABC}$, prove that $\cot \mathrm{A}+\cot \mathrm{B}+\cot \mathrm{C}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}{4 \Delta}$.
III. Long answer type questions
$5 \times 7=35$
18. If $\mathrm{f}: \mathrm{A} \longrightarrow \mathrm{B}, \mathrm{I}_{\mathrm{A}}$ and I_{B} are two identity functions on A and B respectively, then show that $\mathrm{foI}_{\mathrm{A}}=\mathrm{f}=\mathrm{I}_{\mathrm{B} O}$.
19. Using the principle of mathematical induction show that $\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\cdots \cdots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1} \quad \forall n \in N$.
20. If $A=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$ is non - singular matrix then show that A is invertible and $A=\frac{\operatorname{adj} \mathrm{A}}{\operatorname{det} \mathrm{A}}$.
21. Solve the following system of equations by Gauss Jordan method $x-y+3 z=5,4 x+2 y-z=0,-x+3 y+z=5$.
22. Find the shortest distance between the skew lines $(6 \bar{i}+2 \bar{j}+2 \bar{k})+t(\bar{i}-2 \bar{j}+2 \bar{k})$ and $(-4 \overline{\mathrm{i}}-\overline{\mathrm{k}})+\mathrm{s}(3 \overline{\mathrm{i}}-2 \overline{\mathrm{j}}-2 \overline{\mathrm{k}})$ where s , t are scalars.
23. If $A+B+C=180^{\circ}$, then prove that

$$
\cos \frac{\mathrm{A}}{2}+\cos \frac{B}{2}+\cos \frac{C}{2}=4 \cos \frac{\pi-\mathrm{A}}{4} \cos \frac{\pi-\mathrm{B}}{4} \cos \frac{\pi-\mathrm{C}}{4} .
$$

24. Show that $r+r_{3}+r_{1}-r_{2}=4 r \cos B$.

I. Very short answer type questions

1. If $f: R \rightarrow R$ is defined by $f(x)=\frac{1-x^{2}}{1+x^{2}}$, then show that $f(\tan \theta)=\cos 2 \theta$.
2. If $f=\{(1,2),(2,-3),(3,-1)\}$, the find
(i) 2 f
(ii) $2+\mathrm{f}$
(iii) f^{2}
(iv) $\sqrt{\mathrm{f}}$.
3. If $A=\left[\begin{array}{cc}2 & 4 \\ -1 & k\end{array}\right]$ and $A^{2}=0$, then find the value of k.
4. Define trace of matrix and find the trace of A if $A=\left[\begin{array}{ccc}1 & 2 & -\frac{1}{2} \\ 0 & -1 & 2 \\ -\frac{1}{2} & 2 & 1\end{array}\right]$
5. If $\overline{\mathrm{a}}=2 \overline{\mathrm{i}}+4 \overline{\mathrm{j}}-5 \overline{\mathrm{k}}$ and $\overline{\mathrm{b}}=\overline{\mathrm{i}}+\overline{\mathrm{j}}+\overline{\mathrm{k}}$ and $\overline{\mathrm{c}}=\overline{\mathrm{j}}+2 \overline{\mathrm{k}}$, then find the unit vector in the opposite direction of $\mathrm{a}+\mathrm{b}+\mathrm{c}$.
6. Find the vector equation of the plane joining the points

$$
\overline{\mathrm{i}}-2 \overline{\mathrm{j}}+5 \overline{\mathrm{k}},-5 \overline{\mathrm{j}}-\overline{\mathrm{k}} \text { and }-3 \overline{\mathrm{i}}+5 \overline{\mathrm{j}} .
$$

7. If $4 \bar{i}+\frac{2 p}{3} \bar{j}+p \bar{k}$ is parallel to the vector $\bar{i}+2 \bar{j}+3 \bar{k}$, then find p.
8. Find the value of $\sin ^{2} 82 \frac{1}{2}-\sin ^{2} 22 \frac{1}{2}$ 。
9. Find the maximum and minimum values of the function

$$
f(x)=13 \cos x+3 \sqrt{3} \sin x-4
$$

10. Show that Tanh ${ }^{-1}\left(\frac{1}{2}\right)=\frac{1}{2} \log _{\mathrm{e}} 3$.

II. Short answer type questions

$5 \times 4=20$
11. If $\theta-\emptyset=\frac{\pi}{2}$, then show that $\left[\begin{array}{cc}\cos ^{2} \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta\end{array}\right]\left[\begin{array}{cc}\cos ^{2} \emptyset & \cos \emptyset \sin \varnothing \\ \cos \emptyset \sin \emptyset & \cos ^{2} \emptyset\end{array}\right]=0$
12. If $A B C D E F$ is a regular hexagon with centre ' 0 ', then show that

$$
\overline{\mathrm{AB}}+\overline{\mathrm{AC}}+\overline{\mathrm{AD}}+\overline{\mathrm{AE}}+\overline{\mathrm{AF}}=3 \overline{\mathrm{AD}}=6 \overline{\mathrm{OA}}
$$

13. If $\bar{a}=2 \bar{i}+3 \bar{j}+4 \bar{k}, \bar{b}=\bar{i}+\bar{j}-\bar{k}$ and $\bar{c}=\bar{i}-\bar{j}+\bar{k}$, then compute $\bar{a} \times(\bar{b} \times \bar{c})$ and verify that it is perpendicular to \bar{a}.
14. If A is not an integral multiple of $\frac{\pi}{2}$ then prove that $\cot A-\tan A=2 \cot 2 A$.
15. Solve $\sqrt{3} \sin \theta-\cos \theta=\sqrt{2}$.
16. Prove that $\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{3}{5}-\tan ^{-1} \frac{8}{19}=\frac{\pi}{4}$.
17. In $\triangle \mathrm{ABC}$, if $\frac{1}{\mathrm{a}+\mathrm{c}}+\frac{1}{\mathrm{~b}+\mathrm{c}}=\frac{3}{\mathrm{a}+\mathrm{b}+\mathrm{c}}$, then show that $\mathrm{C}=60^{\circ}$.
III. Long answer type questions
18. If $\mathrm{f}: \mathrm{Q} \rightarrow \mathrm{Q}$ is defined by $\mathrm{f}(\mathrm{x})=5 \mathrm{x}+4 \forall \mathrm{x} \in \mathrm{Q}$, then show that f is bijective and find f^{-1}.
19. Using the principle of mathematical induction show that $\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+\cdots \cdots . . \quad$ up to n terms $\frac{n}{24}\left[2 n^{2}+9 n+13\right] \forall n \in N$.
20. Show that $\left|\begin{array}{ccc}a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b\end{array}\right|=(a+b+c)^{3}$.
21. Solve the following system of equations by Cramer's Rule
$3 \mathrm{x}+4 \mathrm{y}+5 \mathrm{z}=18,2 \mathrm{x}-\mathrm{y}+8 \mathrm{z}=13,5 \mathrm{x}-2 \mathrm{y}+7 \mathrm{z}=20$.
22. If a line makes angles $\theta_{1}, \theta_{2}, \theta_{3}$ and θ_{4} with the diagonals of a cube, then show that $\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}+\cos ^{2} \theta_{3}+\cos ^{2} \theta_{4}=\frac{4}{3}$
23. If A, B, C are angles in a triangle, then prove that
$\sin A+\sin B+\sin C=4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$.
24. If $r: R ; r_{1}=2: 5: 12$, then prove that the triangle is right angle at A.

MATHS - IA
MODEL PAPER - 4
TOTAL MARKS: 75
TIME: 3hrs.

I. Very short answer type questions

1. If $A=\{-2,-1,0,1,2\}$ and $f: A \rightarrow B$ is a surjection defined by $f(x)=x^{2}+x+1$, then find B.
2. Find the domain of the real valued function $f(x)=\log \left(x^{2}-4 x+3\right)$.
3. If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ll}3 & 8 \\ 7 & 2\end{array}\right]$ and $2 X+A=B$, then find X.
4. If $\left[\begin{array}{ccc}x-1 & 2 & 5-y \\ 0 & z-1 & 7 \\ 1 & 0 & a-5\end{array}\right]=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 4 & 7 \\ 1 & 0 & 0\end{array}\right]$, then find the values of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and a .
5. If the vectors $-3 \overline{\mathrm{i}}+4 \overline{\mathrm{j}}+\lambda \overline{\mathrm{k}}$ and $\mu \overline{\mathrm{i}}+8 \overline{\mathrm{j}}+6 \overline{\mathrm{k}}$ are collinear vectors, then find the values of μ and λ.
6. Find the vector equation of the line passing through the point $2 \overline{\mathrm{i}}+3 \overline{\mathrm{j}}+\overline{\mathrm{k}}$ and parallel to the vector $4 \overline{\mathrm{i}}-2 \overline{\mathrm{j}}+3 \overline{\mathrm{k}}$.
7. If $\bar{a}=\bar{i}+2 \bar{j}-3 \bar{k}$ and $\bar{b}=3 \overline{\mathrm{i}}-\overline{\mathrm{j}}+2 \overline{\mathrm{k}}$, the show that $\overline{\mathrm{a}}+\overline{\mathrm{b}}$ and $\overline{\mathrm{a}}-\overline{\mathrm{b}}$ are perpendicular to each other.
8. If $\sin \theta=\frac{4}{5}$ and θ is not in the $1^{\text {st }}$ quadrant, then find the value of $\cos \theta$.
9. Prove that $\sin 50^{\circ}-\sin 70^{\circ}+\sin 10^{\circ}=0$.
10. For any $x \in R$, then prove that $\cosh ^{4} x-\sinh ^{4} x=\cosh 2 x$.

II. Short answer type questions

 $5 \times 4=20$11. If $\mathrm{A}=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$, then show that $\mathrm{A}^{-1}=\mathrm{A}^{3}$.
12. If the points $3 \overline{\mathrm{i}}-2 \overline{\mathrm{j}}-\overline{\mathrm{k}}, 2 \overline{\mathrm{i}}+3 \overline{\mathrm{j}}-4 \overline{\mathrm{k}},-\overline{\mathrm{i}}+\overline{\mathrm{j}}+2 \overline{\mathrm{k}}$ and $4 \overline{\mathrm{i}}+5 \overline{\mathrm{j}}+\lambda \overline{\mathrm{k}}$ are coplanar, then show that $\lambda=\frac{-146}{17}$.
13. Find the volume of tetrahedron whose vertices are (1,2, 1), (3, 2, 5), (2, - 1,0$)$ and ($-1,0,1$).
14. Prove that $\cos \frac{\pi}{11} \cdot \cos \frac{2 \pi}{11} \cdot \cos \frac{4 \pi}{11} \cdot \cos \frac{5 \pi}{11}=\frac{1}{32}$.
15. If θ_{1}, θ_{2} are the solution of the equation a $\cos 2 \theta+b \sin 2 \theta=c, \tan \theta_{1} \neq \tan \theta_{2}$ and
$c+a \neq 0$, then find the values of
(i) $\tan \theta_{1}+\tan \theta_{2}$
(ii) $\tan \theta_{1} \cdot \tan \theta_{2}$
16. If $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\pi$, then prove that

$$
\mathrm{x} \sqrt{1-\mathrm{x}^{2}}+\mathrm{y} \sqrt{1-\mathrm{y}^{2}}+\mathrm{z} \sqrt{1-\mathrm{z}^{2}}=2 \mathrm{xyz}
$$

17. If $\mathrm{a}=(\mathrm{b}+\mathrm{c}) \cos \theta$, then prove that $\sin \theta=\frac{2 \sqrt{\mathrm{bc}}}{\mathrm{b}+\mathrm{c}} \cos \frac{\mathrm{A}}{2}$.
III. Long answer type questions
$5 \times 7=35$
18. If $\mathrm{f}: \mathrm{A} \longrightarrow \mathrm{B}$ is a bijection, then show that fof ${ }^{-1}=I_{B}$ and f^{-1} of $=I_{A}$.
19. Using the principle of mathematical induction show that
$2 \cdot 3+3 \cdot 4+4 \cdot 5+$ \qquad up to n terms=

$$
\frac{\mathrm{n}}{3}\left[\mathrm{n}^{2}+6 \mathrm{n}+11\right] \forall \mathrm{n} \in \mathrm{~N} .
$$

20. If $\left|\begin{array}{lll}a & a^{2} & 1+a^{3} \\ b & b^{2} & 1+b^{3} \\ c & c^{2} & 1+c^{3}\end{array}\right|=0$ and $\left|\begin{array}{lll}a & a^{2} & 1 \\ b & b^{2} & 1 \\ c & c^{2} & 1\end{array}\right| \neq 0$, then show that $a b c=-1$.
21. Examine whether the following system of equations is consistent or inconsistent if it is consistent find the complete solution
$\mathrm{x}+\mathrm{y}+\mathrm{z}=3,2 \mathrm{x}+2 \mathrm{y}-\mathrm{z}=3, \mathrm{x}+\mathrm{y}-\mathrm{z}=1$.
22. If $\bar{a}=3 \overline{\mathrm{i}}-\overline{\mathrm{j}}+2 \overline{\mathrm{k}}, \overline{\mathrm{b}}=-\overline{\mathrm{i}}+3 \overline{\mathrm{j}}+2 \overline{\mathrm{k}}, \overline{\mathrm{c}}=4 \overline{\mathrm{i}}+5 \overline{\mathrm{j}}-2 \overline{\mathrm{k}}$ and $\overline{\mathrm{d}}=\overline{\mathrm{i}}+3 \overline{\mathrm{j}}+5 \overline{\mathrm{k}}$ then compute (i) $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(\overline{\mathrm{c}} \times \overline{\mathrm{d}}) \quad$ (ii) $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \cdot \overline{\mathrm{c}}-(\overline{\mathrm{a}} \times \overline{\mathrm{d}}) \cdot \overline{\mathrm{b}}$
23. If A, B, C are angles in a triangle, then prove that $\cos ^{2} \frac{A}{2}+\cos ^{2} \frac{B}{2}+\cos ^{2} \frac{C}{2}=2\left(1+\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}\right)$.
24. If $a=13, b=14, c=15$, then show that $R=65 / 8, r=4, r_{1}=21 / 2, r_{2}=12$ and $r_{3}=14$.

I. Very short answer type questions

1. If $f(x)=\frac{1}{x^{\prime}}, g(x)=\sqrt{x} \forall x \in(0, \infty)$, then find (gof) (x).
2. Find the range of the real valued function $f(x)=\frac{x^{2}-4}{x-2}$.
3. Construct 3×2 matrix whose elements are defined by $\mathrm{a}_{\mathrm{ij}}=\frac{1}{2}|\mathrm{i}-3 \mathrm{j}|$.
4. For any square matrix A show that AA^{\prime} is symmetric.
5. Is the triangle formed by the vectors $3 \overline{\mathrm{i}}+5 \overline{\mathrm{j}}+2 \overline{\mathrm{k}}, 2 \overline{\mathrm{i}}-3 \overline{\mathrm{j}}-5 \overline{\mathrm{k}}$ and $-5 \overline{\mathrm{i}}-2 \overline{\mathrm{j}}+3 \overline{\mathrm{k}}$ equilateral?
6. If α, β, γ are the angles made by the vector $3 \overline{\mathrm{i}}-6 \overline{\mathrm{j}}+2 \overline{\mathrm{k}}$ with the positive direction of the coordinate axes, then find $\cos \alpha, \cos \beta$ and $\cos \gamma$.
7. Find the area of the parallelogram having $2 \overline{\mathrm{i}}-3 \overline{\mathrm{j}}$ and $3 \overline{\mathrm{i}}-\overline{\mathrm{k}}$ as adjacent sides.
8. For what values of x th the first quadrant $\frac{2 \tan x}{1-\tan ^{2} x}$ is positive.
9. Eliminate θ from $\mathrm{x}=\mathrm{a} \cos ^{3} \theta, \mathrm{y}=\mathrm{b} \sin ^{3} \theta$.
10. Prove that $\tan (x-y)=\frac{\tan x-\tan y}{1-\tan x \tan y}$.
II. Short answer type questions
$5 \times 4=20$
11. If $A=\left[\begin{array}{lll}2 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 2 & 1\end{array}\right]$, then find adj A and A^{-1}.
12. In two-dimensional plane prove by using vector method, the equation of the line whose intercepts on the axes are a and b is $\frac{x}{a}+\frac{y}{b}=1$.
13. Find the area of the triangle whose vertices are $A(1,2,3), B(2,3,1)$ and $C(3,1,2)$.
14. Prove that $\frac{\tan \theta+\sec \theta-1}{\tan \theta-\sec \theta+1}=\frac{1+\sin \theta}{\cos \theta}$.
15. Find all the values of x in $(-\pi, \pi)$ satisfying the equation $8^{1+\cos x+\cos ^{2} x+\cdots}=4^{3}$.
16. Find the value of $\tan \left[\cos ^{-1} \frac{4}{5}+\tan ^{-1} \frac{2}{3}\right]$.
17. If $\cot \frac{A}{2}, \cot \frac{B}{2}, \cot \frac{C}{2}$ are in AP, then prove that a, b, c are in AP.
III. Long answer type questions
18. If the function f is defined by
$f(x)=\left\{\begin{array}{l}x+2 ; \quad x>1 \\ 2 ;-1 \leq x \leq 1 \\ x-1 ;-3<x<-1\end{array}\right.$
then find the values of $f(2), f(0), f(-1.5), f(2)+f(-2)$ and $f(-5)$.
19. Using the principle of mathematical induction show that $3.5^{2 \mathrm{n}+1}+2^{3 \mathrm{n}+1}$ is divisible by $17, \forall \mathrm{n} \in \mathrm{N}$.
20. Show that $\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|^{2}=\left|\begin{array}{ccc}2 a c-a^{2} & c^{2} & b^{2} \\ c^{2} & 2 a c-b^{2} & a^{2} \\ b^{2} & a^{2} & 2 a b-c^{2}\end{array}\right|=\left(a^{3}+b^{3}+c^{3}-3 a b c\right)^{2}$
21. If $A=\left[\begin{array}{ccc}1 & -2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1\end{array}\right]$, then find $A^{3}-3 A^{2}-A-3 I$.
22. If $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are non-zero vectors and $\overline{\mathrm{a}}$ is perpendicular to both $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ if $|\overline{\mathrm{a}}|=2,|\overline{\mathrm{~b}}|=3$ $|\bar{c}|=4$ and $(\bar{b}, \bar{c})=\frac{2 \pi}{3}$, then find $\left|\left[\begin{array}{ll}\overline{\mathrm{a}} & \bar{b} \\ \bar{c}\end{array}\right]\right|$.
23. If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are angles in a triangle, then prove that
$\operatorname{Cos} \mathrm{A}+\cos \mathrm{B}-\cos \mathrm{C}=-1+4 \cos \frac{\mathrm{~A}}{2} \cos \frac{\mathrm{~B}}{2} \sin \frac{\mathrm{C}}{2}$
24. Prove that $\frac{\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}}{\cot A+\cot B+\cot C}=\frac{(a+b+c)^{2}}{a^{2}+b^{2}+c^{2}}$
