2 Polynomials

Polynomial:

An algebraic expression becomes a polynomial if the powers of variable(s) are whole numbers.

Ex: $3 x-5,4 x^{2}+x-3,2 x^{3}+3 x^{2}-5 x+4$

Value of a polynomial

$p(a)$ is the value of a polynomial $p(x)$ at $x=a$
Ex: $\operatorname{let} p(x)=2 x-4$

$$
\text { Put } x=1 \Rightarrow p(1)=2(1)-4=2-4=-2
$$

$\therefore-2$ is the value of the polynomial $\mathrm{p}(\mathrm{x})$ at $\mathrm{x}=1$
Zero of a polynomial
Zeroes of a polynomial $\mathrm{p}(\mathrm{x})$ is any real number ' k ' such that $\mathrm{p}(\mathrm{k})=0$.
Ex: $\operatorname{let} \mathrm{p}(\mathrm{x})=\mathrm{x}-3$

$$
\text { Putx }=3 \Rightarrow p(3)=3-3=0
$$

$\therefore 3$ is the zero of the polynomial $\mathrm{p}(\mathrm{x})$
Note: For finding the zeroes of the polynomial $p(x), \operatorname{let} p(x)=0$
Degree of a polynomial
The highest power of x in a polynomial $p(x)$ is called as degree of the polynomial $p(x)$

Linear Polynomial

A polynomial of degree 1 is called a linear polynomial
Ex: $3 x-5, \sqrt{2} x+5, y-\frac{4}{5}$

Quadratic Polynomial

A polynomial of degree 2 is called a Quadratic polynomial
Ex: $5 x^{2}+4 x-1, x^{2}+5,3 y^{2}+7 y-\frac{4}{7}$
Cubic Polynomial
A polynomial of degree 3 is called a Cubic polynomial
Ex: $2 \mathrm{x}^{3}+3 \mathrm{x}^{2}-7 \mathrm{x} 3, \mathrm{x}^{3}+5 \mathrm{x}, \mathrm{z}^{3}+8 \mathrm{z}-2$
Graphical Representation of Linear polynomial:
$y=x+2$

x	-3	-2	-1	0	1	2
$y=x+2$	-1	0	1	2	3	4
(x, y)	$(-3,-1)$	$(-2,0)$	$(-1,1)$	$(0,2)$	$(1,3)$	$(2,4)$

Graphical Representation of Quadratic polynomial:
$y=x^{2}+x-6$

x	-4	-3	-2	-1	0	1	2	3
$\mathrm{y}=\mathrm{x}^{2}+\mathrm{x}-6$	6	0	-4	-6	-6	-4	0	6
(x, y)	$(-4,6)$	$(-3,0)$	$(-2,-4)$	$(-1,-6)$	$(0,-6)$	$(1,-4)$	$(2,0)$	$(3,6)$

For any quadratic polynomial $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}, \mathrm{a} \neq 0$, the graph of the corresponding equation $y=a x^{2}+b x+c(a \neq 0$,$) either opens upwards like \bigcup$ or opens downwards like \bigcap This depends on whether $\mathrm{a}>0$ or $\mathrm{a}<0$.

The shape of these curves is called parabolas

- The shape of the graph of $y=a x^{2}+b x+c,(a \neq 0)$ the following three cases arise.

Case (i):
Here, the graph cuts X - axis at two distinct points. In this case, the x coordinates of those two points are the two zeroes of the quadratic polynomial $a^{2}+b x+c$. The parabola
 opens either upward or downward.

Case (ii) :
Here, the graph touches X - axis at exactly one point. In this case, the x coordinate of that point is the only zero for the quadratic polynomial $a x^{2}+b x+c$.

Case (iii) :
Here, the graph is either completely above the X -axis or completely below the X - axis. So, it does not cut the X axis at any point. The quadratic polynomial $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$ have no zero in this case.

Graphical Representation of Cubic polynomial:

$$
y=x^{3}-x^{2}
$$

x	-2	-1	0	1	2
$y=x^{3}-x^{2}$	-12	-2	0	0	4
(x, y)	$(-2,-12)$	$(-1,-2)$	$(0,0)$	$(1,0)$	$(2,4)$

EXERCISE 2.1

1. The graphs of $y=p(x)$ are given in Fig. 2.10 below, for some polynomials $p(x)$. Find the number of zeroes of $p(x)$, in each case.

Solution:

(i) From the graph, the graph of polynomial is parallel to X - axis. It does not cuts X - axis at any point
\therefore the polynomial has no zeroes
(ii) From the graph, the graph of polynomial is cuts the X - axis at only one point.
\therefore the polynomial has one zero
(iii) From the graph, the graph of polynomial is cuts the X - axis at three points.
\therefore the polynomial has three zeroes
(iv) From the graph, the graph of polynomial is cuts the X - axis at two points.
\therefore the polynomial has two zeroes.
(v) From the graph, the graph of polynomial is cuts the X - axis at four points.
\therefore the polynomial has four zeroes
(vi) From the graph, the graph of polynomial is cuts the X - axis at three points. \therefore the polynomial has three zeroes.

Relationship between Zeroes and Coefficients of the polynomial:

$P(x)=a x+b$ is linear polynomial
Zero of the polynomial is $x=-\frac{b}{a}$
$P(x)=a x^{2}+b x+c(a \neq 0)$ is general form of quadratic polynomial.

$$
\begin{aligned}
& \text { Sum of the zeroes }=\alpha+\beta=-\frac{b}{a}=\frac{-(\text { coefficent of } x)}{\text { coefficent of } x^{2}} \\
& \text { Product of the zeroes }=\frac{c}{a}=\frac{\text { constant }}{\text { coefficent of } x^{2}}
\end{aligned}
$$

$p(x)=a x^{3}+b x^{2}+c x+d(a \neq 0)$ is general form of cubic polynomial.

$$
\begin{aligned}
& \alpha+\beta+\gamma=-\frac{b}{a}=\frac{-\left(\text { coefficent of } x^{2}\right)}{\text { coefficent of } x^{3}} \\
& \alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a}=\frac{\text { coefficent of } x}{\text { coefficent of } x^{3}} \\
& \alpha \beta \gamma=-\frac{d}{a}=\frac{-(\text { constant })}{\text { coefficent of } x^{3}}
\end{aligned}
$$

- If α, β are the zeroes of quadratic polynomial then its form is $k\left[x^{2}-(\alpha+\beta) x+\alpha \beta\right]$
- If α, β and γ are the zeroes of the cubic polynomial then its form is

$$
\mathrm{k}\left[\mathrm{x}^{3}-(\alpha+\beta+\gamma) \mathrm{x}+(\alpha \beta+\beta \gamma+\gamma \alpha) \mathrm{x}-\alpha \beta \gamma\right]
$$

EXERCISE 2.2

1. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.
(i) $x^{2}-2 x-8$
(ii) $4 s^{2}-4 s+1$
(iii) $6 x^{2}-3-7 x$
(iv) $4 u^{2}+8 u$
(v) $\mathrm{t}^{2}-15$
(vi) $3 x^{2}-x-4$

Solution:

(i) Given polynomial is $x^{2}-2 x-8$

Let $P(x)=x^{2}-2 x-8$
For the zeroes of the polynomial $\mathrm{P}(\mathrm{x})=0$
$\Rightarrow x^{2}-2 x-8=0$
$\mathrm{x}^{2}-4 \mathrm{x}+2 \mathrm{x}-8=0$
$x(x-4)+2(x-4)=0$
$(x-4)(x+2)=0$
$\mathrm{x}-4=0$ or $\mathrm{x}+2=0$
$x=4$ or $x=-2$
let $\alpha=-2$ and $\beta=4$

Sum of the zeroes $=\alpha+\beta=(-2)+4$

$$
\begin{aligned}
& =2 \\
& =\frac{-(-2)}{1} \\
& =\frac{-(\text { coefficeint of } x)}{\text { coefficient of } x^{2}}
\end{aligned}
$$

Product of the zeroes $=\alpha \beta=(-2)(4)$

$$
\begin{aligned}
& =-8 \\
& =\frac{-8}{1} \\
& =\frac{\text { constant }}{\text { coefficient of } x^{2}}
\end{aligned}
$$

(ii) Given polynomial is $4 s^{2}-4 s+1$

Let $P(s)=4 s^{2}-4 s+1$
For the zeroes of the polynomial $P(s)=0$

$$
\begin{aligned}
& \Rightarrow 4 s^{2}-4 s+1=0 \\
& \quad s^{2}-2 s-2 s+1=0 \\
& s(2 s-1)-1(2 s-1)=0 \\
& \\
& (2 s-1)(2 s-1)=0 \\
& 2 s-1=0 \text { or } 2 s-1=0 \\
& \\
& \\
& s=\frac{1}{2} \text { or } s=\frac{1}{2}
\end{aligned}
$$

let $\alpha=\frac{1}{2} 2$ and $\beta=\frac{1}{2}$
Sum of the zeroes $=\alpha+\beta=\frac{1}{2}+\frac{1}{2}$

$$
=1
$$

$$
=\frac{-(-4)}{4}
$$

$$
=\frac{-(\text { coefficeint of } s)}{\text { coefficient of } s^{2}}
$$

Product of the zeroes $=\alpha \beta=\frac{1}{2} \times \frac{1}{2}$

$$
\begin{aligned}
& =\frac{1}{4} \\
& =\frac{\text { constant }}{\text { coefficient of } \mathrm{s}^{2}}
\end{aligned}
$$

(iii) Given polynomial is $6 x^{2}-3-7 x$

Let $P(x)=6 x^{2}-7 x-3$
For the zeroes of the polynomial $P(x)=0$
$\Rightarrow 6 x^{2}-7 x-3=0$

$$
6 x^{2}-9 x+2 x-3=0
$$

$$
3 x(2 x-3)+1(2 x-3)=0
$$

$$
(2 x-3)(3 x+1)=0
$$

$$
2 x-3=0 \text { or } 3 x+1=0
$$

$$
\mathrm{x}=\frac{3}{2} \text { or } \mathrm{x}=\frac{-1}{3}
$$

let $\alpha=\frac{-1}{3}$ and $\beta=\frac{3}{2}$
Sum of the zeroes $=\alpha+\beta=\frac{-1}{3}+\frac{3}{2}$

$$
\begin{aligned}
& =\frac{-2+9}{6}=\frac{7}{6} \\
& =\frac{-(-7)}{6} \\
& =\frac{-(\text { coefficeint of } x)}{\text { coefficient of } x^{2}}
\end{aligned}
$$

Product of the zeroes $=\alpha \beta=\frac{-1}{3} \times \frac{3}{2}$

$$
\begin{aligned}
& =\frac{-3}{6} \\
& =\frac{-1}{2} \\
& =\frac{\text { constant }}{\text { coefficient of } x^{2}}
\end{aligned}
$$

(iv) Given polynomial is $4 u^{2}+8 u$

Let $\mathrm{P}(\mathrm{u})=4 \mathrm{u}^{2}+8 \mathrm{u}$
For the zeroes of the polynomial $\mathrm{P}(\mathrm{u})=0$
$\Rightarrow 4 u^{2}+8 u=0$

$$
4 u(u+2)=0
$$

$$
4 u=0 \text { or } u+2=0
$$

$$
u=0 \text { or } u=-2
$$

let $\alpha=-2$ and $\beta=0$
Sum of the zeroes $=\alpha+\beta=(-2)+0$

$$
\begin{aligned}
& =-2 \\
& =\frac{-(8)}{4} \\
& =\frac{-(\text { coefficeint of } u)}{\text { coefficient of } u^{2}}
\end{aligned}
$$

Product of the zeroes $=\alpha \beta=(-2)(0)$

$$
\begin{aligned}
& =0 \\
& =\frac{0}{4} \\
& =\frac{\text { constant }}{\text { coefficient of } u^{2}}
\end{aligned}
$$

(v) Given polynomial is $\mathrm{t}^{2}-15$

Let $\mathrm{P}(\mathrm{t})=\mathrm{t}^{2}-15$
For the zeroes of the polynomial $\mathrm{P}(\mathrm{t})=0$
$\Rightarrow \mathrm{t}^{2}-15=0$
$\mathrm{t}^{2}=15$
$\mathrm{t}= \pm \sqrt{15}$

$$
t=+\sqrt{15} \text { or } t=-\sqrt{15}
$$

let $\alpha=-\sqrt{15}$ and $\beta=\sqrt{15}$
Sum of the zeroes $=\alpha+\beta=(-\sqrt{15})+\sqrt{15}$

$$
\begin{aligned}
& =0 \\
& =\frac{-(0)}{1} \\
& =\frac{-(\text { coefficeint of } \mathrm{t})}{\text { coefficient of } \mathrm{t}^{2}}
\end{aligned}
$$

Product of the zeroes $=\alpha \beta=(-\sqrt{15})(\sqrt{15})$

$$
=-\sqrt{15}
$$

$$
\begin{aligned}
& =\frac{-\sqrt{15}}{1} \\
& =\frac{\text { constant }}{\text { coefficient of } \mathrm{t}^{2}}
\end{aligned}
$$

(vi) Given polynomial is $3 x^{2}-x-4$

Let $P(x)=3 x^{2}-x-4$
For the zeroes of the polynomial $P(x)=0$

$$
\begin{aligned}
& \Rightarrow 3 x^{2}-x-4=0 \\
& 3 x^{2}-4 x+3 x-4=0 \\
& x(3 x-4)+1(3 x-4)=0 \\
& (3 x-4)(x+1)=0 \\
& 3 x-4=0 \text { or } x+1=0 \\
& \\
& x=\frac{4}{3} \text { or } x=-1
\end{aligned}
$$

let $\alpha=-1$ and $\beta=\frac{4}{3}$
Sum of the zeroes $=\alpha+\beta=-1+\frac{4}{3}$

$$
=\frac{-3+4}{3}
$$

$$
=\frac{-1}{3}
$$

$$
=\frac{-(1)}{3}
$$

$=\frac{-(\text { coefficeint of } \mathrm{x})}{\text { coefficient of } \mathrm{x}^{2}}$
Product of the zeroes $=\alpha \beta=(-1)\left(\frac{4}{3}\right)$

$$
\begin{aligned}
& =\frac{-4}{3} \\
& =\frac{\text { constant }}{\text { coefficient of } x^{2}}
\end{aligned}
$$

2. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.
(i) $\frac{1}{4},-1$
(ii) $\sqrt{2}, \frac{1}{3}$
(iii) $0, \sqrt{5}$
(iv) 1,1
(v) $-\frac{1}{4}, \frac{1}{4}$
(vi) 4,1

Solution:
(i) Given $\alpha+\beta=\frac{1}{4}$ and $\alpha \beta=-1$

Quadratic polynomial is $k\left[x^{2}-(\alpha+\beta) x+\alpha \beta\right]$

$$
\begin{aligned}
& =\mathrm{k}\left[\mathrm{x}^{2}-\left(\frac{1}{4}\right) \mathrm{x}+(-1)\right] \\
& =\mathrm{k}\left[\mathrm{x}^{2}-\frac{\mathrm{x}}{4}-1\right]
\end{aligned}
$$

When $\mathrm{k}=4$, the quadratic polynomial is $4 \mathrm{x}^{2}-\mathrm{x}-4$
(ii) Given $\alpha+\beta=\sqrt{2}$ and $\alpha \beta=\frac{1}{3}$

Quadratic polynomial is $k\left[x^{2}-(\alpha+\beta) x+\alpha \beta\right]$

$$
\begin{aligned}
& =\mathrm{k}\left[\mathrm{x}^{2}-(\sqrt{2}) \mathrm{x}+\frac{1}{3}\right] \\
& =\mathrm{k}\left[\mathrm{x}^{2}-\sqrt{2} \mathrm{x}+\frac{1}{3}\right]
\end{aligned}
$$

When $\mathrm{k}=3$, the quadratic polynomial is $3 \mathrm{x}^{2}-3 \sqrt{2} \mathrm{x}+1$
(iii) Given $\alpha+\beta=0$ and $\alpha \beta=\sqrt{5}$

Quadratic polynomial is $k\left[x^{2}-(\alpha+\beta) x+\alpha \beta\right]$

$$
\begin{aligned}
& =k\left[x^{2}-(0) x+\sqrt{5}\right] \\
& =k\left[x^{2}+\sqrt{5}\right]
\end{aligned}
$$

When $\mathrm{k}=1$, the quadratic polynomial is $\mathrm{x}^{2}+\sqrt{5}$
(iv) Given $\alpha+\beta=1$ and $\alpha \beta=1$

Quadratic polynomial is $\mathrm{k}\left[\mathrm{x}^{2}-(\alpha+\beta) \mathrm{x}+\alpha \beta\right]$

$$
\begin{aligned}
& =\mathrm{k}\left[\mathrm{x}^{2}-(1) \mathrm{x}+1\right] \\
& =\mathrm{k}\left[\mathrm{x}^{2}-\mathrm{x}+1\right]
\end{aligned}
$$

When $\mathrm{k}=1$, the quadratic polynomial is $\mathrm{x}^{2}-\mathrm{x}+1$
(v) Given $\alpha+\beta=-\frac{1}{4}$ and $\alpha \beta=\frac{1}{4}$

Quadratic polynomial is $\mathrm{k}\left[\mathrm{x}^{2}-(\alpha+\beta) \mathrm{x}+\alpha \beta\right.$]

$$
\begin{aligned}
& =\mathrm{k}\left[\mathrm{x}^{2}-\left(-\frac{1}{4}\right) \mathrm{x}+\frac{1}{4}\right] \\
& =\mathrm{k}\left[\mathrm{x}^{2}+\frac{\mathrm{x}}{4}+\frac{1}{4}\right]
\end{aligned}
$$

When $\mathrm{k}=4$, the quadratic polynomial is $4 \mathrm{x}^{2}+\mathrm{x}+1$
(vi) Given $\alpha+\beta=4$ and $\alpha \beta=1$

Quadratic polynomial is $\mathrm{k}\left[\mathrm{x}^{2}-(\alpha+\beta) \mathrm{x}+\alpha \beta\right.$]

$$
\begin{aligned}
& =\mathrm{k}\left[\mathrm{x}^{2}-(4) \mathrm{x}+1\right] \\
& =\mathrm{k}\left[\mathrm{x}^{2}-4 \mathrm{x}+1\right]
\end{aligned}
$$

When $\mathrm{k}=1$, the quadratic polynomial is $\mathrm{x}^{2}-4 \mathrm{x}+1$

