2 Polynomials

Polynomial:

An algebraic expression becomes a polynomial if the powers of variable(s) are whole numbers.

Ex: 3x - 5, $4x^2 + x - 3$, $2x^3 + 3x^2 - 5x + 4$

Value of a polynomial

p(a) is the value of a polynomial p(x) at x = a **Ex:** let p(x) = 2x - 4Put $x = 1 \Longrightarrow p(1) = 2(1) - 4 = 2 - 4 = -2$ $\therefore -2$ is the value of the polynomial p(x) at x = 1

Zero of a polynomial

Zeroes of a polynomial p(x) is any real number 'k' such that p(k) = 0.

Ex: let p(x) = x - 3Put $x = 3 \Longrightarrow p(3) = 3 - 3 = 0$

 \therefore 3 is the zero of the polynomial p(x)

Note: For finding the zeroes of the polynomial p(x), let p(x) = 0

Degree of a polynomial

The highest power of x in a polynomial p(x) is called as degree of the polynomial p(x)

Linear Polynomial

A polynomial of degree 1 is called a linear polynomial

Ex: 3x - 5, $\sqrt{2}x + 5$, $y - \frac{4}{5}$

Quadratic Polynomial

A polynomial of degree 2 is called a Quadratic polynomial

Ex: $5x^2 + 4x - 1$, $x^2 + 5$, $3y^2 + 7y - \frac{4}{7}$

Cubic Polynomial

A polynomial of degree 3 is called a **Cubic polynomial** Ex: $2x^3 + 3x^2 - 7x^2 + 5x$, $z^3 + 8z - 2$

Graphical Representation of Linear polynomial:

y = x + 2

Х	-3	-2	-1	0	1	2
y = x + 2	-1	0	1	2	3	4
(x, y)	(-3, -1)	(-2, 0)	(-1, 1)	(0, 2)	(1, 3)	(2, 4)

Graphical Representation of Quadratic polynomial:

 $y = x^2 + x - 6$

For any quadratic polynomial ax² + bx + c, a ≠ 0, the graph of the corresponding equation y = ax² + bx + c (a ≠ 0,) either opens upwards like or opens downwards like This depends on whether a > 0 or a < 0. The shape of these curves is called parabolas</p>

The shape of the graph of $y = ax^2 + bx + c$, $(a \neq 0)$ the following three cases arise.

Case(i):

Here, the graph cuts X – axis at two distinct points. In this case, the xcoordinates of those two points are the two zeroes of the quadratic polynomial $ax^2 + bx + c$. The parabola opens either upward or downward.

Case (ii):

Here, the graph touches X – axis at exactly one point. In this case, the xcoordinate of that point is the only zero for the quadratic polynomial $ax^2 + bx + c$.

Case (iii):

Here, the graph is either completely above the X-axis or completely below the X – axis. So, it does not cut the Xaxis at any point. The quadratic polynomial $ax^2 + bx + c$ have no zero in this case.

Nayini Satyanarayana Reddy (Satyam) - M.Sc., Bed. Maths

Graphical Representation of Cubic polynomial:

 $y = x^3 - x^2$

Х	-2	-1	0	1	2
$y = x^3 - x^2$	-12	-2	0	0	4
(x, y)	(-2, -12)	(-1, -2)	(0, 0)	(1, 0)	(2, 4)

			П			Y							S4	al	•		ľ
			\square	_	Ц	6				0	X-	axi	s 1	cm.	- 1	un	8
	11	\square	\square	_	Щ	- 6			_	0	Y-	axi	<u>s 1</u>	m	1	un	k
		\square	\square	_	Ц	4		4	_								L
	11	\square	\square	_	Ц	- 10-											Ļ
			\square		Ц	2	1/										L
	1		\square		Ц	1	1										Ļ
x						Ľ											L
-10	9-8-	1.4.	\$4	4 -	V	٩٧		2. \$	+	\$	6			1	0 1	1	
						12											L
						1											
				Т		Ľ											[
			П	T		1.			Т								ſ
			П		Π	T,				Γ							Γ
						Ļ											ſ

EXERCISE 2.1

1. The graphs of y = p(x) are given in Fig. 2.10 below, for some polynomials p(x). Find the number of zeroes of p(x), in each case.

Solution:

- (i) From the graph, the graph of polynomial is parallel to X axis. It does not cuts X axis at any point
 - \therefore the polynomial has no zeroes
- (ii) From the graph, the graph of polynomial is cuts the X axis at only one point.
 ∴ the polynomial has one zero
- (iii) From the graph, the graph of polynomial is cuts the X axis at three points.∴ the polynomial has three zeroes

- (iv) From the graph, the graph of polynomial is cuts the X axis at two points.
 ∴ the polynomial has two zeroes.
- (v) From the graph, the graph of polynomial is cuts the X axis at four points.
 ∴ the polynomial has four zeroes
- (vi) From the graph, the graph of polynomial is cuts the X axis at three points.∴ the polynomial has three zeroes.

Relationship between Zeroes and Coefficients of the polynomial:

 P(x) = ax + b is linear polynomial Zero of the polynomial is x = -b/a
 P(x) = ax² + bx + c (a ≠ 0) is general form of quadratic polynomial. Sum of the zeroes = α + β = -b/a = -(coefficent of x)/(coefficent of x²) Product of the zeroes = c/a = constant/(coefficent of x²)
 p(x) = ax³ + bx² + cx + d (a ≠ 0) is general form of cubic polynomial. α + β + γ = -b/a = -(coefficent of x²)/(coefficent of x³)

$$\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a} = \frac{\text{coefficient of } x^3}{\text{coefficient of } x^3}$$
$$\alpha\beta\gamma = -\frac{d}{a} = \frac{-(\text{constant})}{\text{coefficient of } x^3}$$

- (a) If α, β are the zeroes of quadratic polynomial then its form is $k[x^2 (\alpha + \beta)x + \alpha \beta]$
- $\textcircled{\begin{tinded} \hline \begin{tince} \hline \hline \begin{tince} \hline \hline \begin{tince} \hline \hline \end{tince} \end{bmatrix}$ If α, β and γ are the zeroes of the cubic polynomial then its form is

 $k [x^3 - (\alpha + \beta + \gamma)x + (\alpha\beta + \beta\gamma + \gamma\alpha)x - \alpha\beta\gamma]$

EXERCISE 2.2

1. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

(i) $x^2 - 2x - 8$ (ii) $4s^2 - 4s + 1$ (iii) $6x^2 - 3 - 7x$ (iv) $4u^2 + 8u$ (v) $t^2 - 15$ (vi) $3x^2 - x - 4$

Solution:

(i) Given polynomial is $x^2 - 2x - 8$ Let P (x) = $x^2 - 2x - 8$ For the zeroes of the polynomial P (x) = 0 $\Rightarrow x^2 - 2x - 8 = 0$ $x^2 - 4x + 2x - 8 = 0$ x (x - 4) + 2(x - 4) = 0 (x - 4) (x + 2) = 0 x - 4 = 0 or x + 2 = 0 x = 4 or x = -2let $\alpha = -2$ and $\beta = 4$

Sum of the zeroes = $\alpha + \beta = (-2) + 4$ = 2 $= \frac{-(-2)}{1}$ $= \frac{-(\operatorname{coefficeint of } x)}{\operatorname{coefficient of } x^2}$ Product of the zeroes = $\alpha \beta = (-2)(4)$ = -8 $=\frac{\frac{-8}{1}}{\frac{1}{1}}$ coefficient of x² (ii) Given polynomial is $4s^2 - 4s + 1$ Let $P(s) = 4s^2 - 4s + 1$ For the zeroes of the polynomial P(s) = 0 \Rightarrow 4s² - 4s + 1 = 0 $s^2 - 2s - 2s + 1 = 0$ s(2s-1) - 1(2s-1) = 0(2s-1)(2s-1) = 02s - 1 = 0 or 2s - 1 = 0 $s = \frac{1}{2} \text{ or } s = \frac{1}{2}$ let $\alpha = \frac{1}{2}2$ and $\beta = \frac{1}{2}$ Sum of the zeroes = $\alpha + \beta = \frac{1}{2} + \frac{1}{2}$ $= \frac{\frac{1}{-(-4)}}{\frac{4}{-(\operatorname{coefficeint of s})}}$ Product of the zeroes = $\alpha \beta = \frac{\frac{1}{1} \cos \theta}{\frac{1}{2} \times \frac{1}{2}}$ constant coefficient of s² (iii) Given polynomial is $6x^2 - 3 - 7x$ Let P (x) = $6x^2 - 7x - 3$ For the zeroes of the polynomial P(x) = 0 \Rightarrow 6x² - 7x - 3 = 0 $6x^2 - 9x + 2x - 3 = 0$ 3x(2x-3) + 1(2x-3) = 0(2x-3)(3x+1) = 02x - 3 = 0 or 3x + 1 = 0 $x = \frac{3}{2} \text{ or } x = \frac{-1}{3}$ let $\alpha = \frac{-1}{3}$ and $\beta = \frac{3}{2}$ Sum of the zeroes = $\alpha + \beta = \frac{-1}{3} + \frac{3}{2}$

Nayini Satyanarayana Reddy (Satyam) - M.Sc., Bed. Maths

$$=\frac{-2+9}{6} = \frac{7}{6}$$

$$=\frac{-(-7)}{6}$$

$$=\frac{-(coefficient of x)}{coefficient of x^{2}}$$
Product of the zeroes = $\alpha \beta = -\frac{1}{3} \times \frac{3}{2}$

$$=\frac{-3}{6}$$

$$=\frac{-1}{2}$$

$$=\frac{-2}{constant}$$

$$=\frac{-1}{2}$$

$$=\frac{constant}{coefficient of x^{2}}$$
(iv) Given polynomial is $4u^{2} + 8u$
Let P (u) = $4u^{2} + 8u$
For the zeroes of the polynomial P (u) = 0
 $\Rightarrow 4u^{2} + 8u = 0$
 $4u (u + 2) = 0$
 $4u = 0 \text{ or } u + 2 = 0$
 $u = 0 \text{ or } u = -2$
 $let \alpha = -2 \text{ and } \beta = 0$
Sum of the zeroes = $\alpha + \beta = (-2) + 0$
 $= -2$
 $=\frac{-(8)}{4}$
 $=\frac{-(coefficient of u^{2})}{coefficient of u^{2}}$
Product of the zeroes = $\alpha \beta = (-2)(0)$
 $= 0$
 $=\frac{0}{4}$
 $=\frac{constant}{coefficient of u^{2}}$
(v) Given polynomial is $t^{2} - 15$
Let P (t) = $t^{2} - 15$
For the zeroes of the polynomial P (t) = 0
 $\Rightarrow t^{2} - 15 = 0$
 $t^{2} = 15$
 $t = \pm \sqrt{15}$ or $t = -\sqrt{15}$
Sum of the zeroes = $\alpha + \beta = (-\sqrt{15}) + \sqrt{15}$
 $= 0$
 $=\frac{-(0)}{1}$
 $=\frac{-(0)}{1}$
 $=\frac{-(0)}{1}$
Product of the zeroes = $\alpha + \beta = (-\sqrt{15}) + \sqrt{15}$
Product of the zeroes = $\alpha = \beta = (-\sqrt{15}) + \sqrt{15}$

 $= \frac{-\sqrt{15}}{\frac{1}{\text{constant}}}$ $= \frac{1}{\frac{1}{\text{coefficient of } t^2}}$ (vi) Given polynomial is $3x^2 - x - 4$ Let P (x) = $3x^2 - x - 4$ For the zeroes of the polynomial P(x) = 0 \Rightarrow 3x² - x - 4 = 0 $3x^2 - 4x + 3x - 4 = 0$ x(3x-4) + 1(3x-4) = 0(3x-4)(x+1) = 03x - 4 = 0 or x + 1 = 0 $x = \frac{4}{3}$ or x = -1let $\alpha = -1$ and $\beta = \frac{4}{2}$ Sum of the zeroes = $\alpha + \beta = -1 + \frac{4}{3}$ $= \frac{-3 + 4}{3}$ $= \frac{-1}{3}^{-1}$ $= \frac{-(1)}{3}$ $= \frac{-(\text{coefficient of } x)}{\text{coefficient of } x^{2}}$ Product of the zeroes = $\alpha \beta = (-1)(\frac{4}{3})$ $= \frac{-4}{3}$ $= \frac{-4}{3}$ = $\frac{\text{constant}}{\text{coefficient of } x^2}$

2. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

(i) $\frac{1}{4}$, -1 (ii) $\sqrt{2}$, $\frac{1}{3}$ (iii) 0, $\sqrt{5}$ (iv) 1, 1 (v) $-\frac{1}{4}$, $\frac{1}{4}$ (vi) 4, 1 Solution:

(i) Given $\alpha + \beta = \frac{1}{4}$ and $\alpha \beta = -1$ Quadratic polynomial is $k[x^2 - (\alpha + \beta)x + \alpha \beta]$ $= k[x^2 - (\frac{1}{4})x + (-1)]$ $= k[x^2 - \frac{x}{4} - 1]$

When k = 4, the quadratic polynomial is $4x^2 - x - 4$

(ii) Given $\alpha + \beta = \sqrt{2}$ and $\alpha \beta = \frac{1}{3}$ Quadratic polynomial is $k[x^2 - (\alpha + \beta)x + \alpha \beta]$ $= k[x^2 - (\sqrt{2})x + \frac{1}{3}]$ $= k[x^2 - \sqrt{2}x + \frac{1}{3}]$

When k = 3, the quadratic polynomial is $3x^2 - 3\sqrt{2}x + 1$

(iii) Given $\alpha + \beta = 0$ and $\alpha \beta = \sqrt{5}$ Quadratic polynomial is $k[x^2 - (\alpha + \beta) x + \alpha \beta]$ $= k[x^2 - (0) x + \sqrt{5}]$ $= k[x^2 + \sqrt{5}]$ When k = 1, the quadratic polynomial is $x^2 + \sqrt{5}$ (iv) Given $\alpha + \beta = 1$ and $\alpha \beta = 1$ Quadratic polynomial is $k[x^2 - (\alpha + \beta) x + \alpha \beta]$ $= k[x^2 - (1) x + 1]$ $= k[x^2 - x + 1]$ When k = 1, the quadratic polynomial is $x^2 - x + 1$ (v) Given $\alpha + \beta = -\frac{1}{4}$ and $\alpha \beta = \frac{1}{4}$ Quadratic polynomial is $k[x^2 - (\alpha + \beta) x + \alpha \beta]$ $= k[x^2 - (-\frac{1}{4}) x + \frac{1}{4}]$ $= k[x^2 + \frac{x}{4} + \frac{1}{4}]$ When k = 4, the quadratic polynomial is $4x^2 + x + 1$ (vi) Given $\alpha + \beta = 4$ and $\alpha \beta = 1$

(vi) Given
$$\alpha + \beta = 4$$
 and $\alpha \beta = 1$
Quadratic polynomial is $k[x^2 - (\alpha + \beta)x + \alpha \beta]$
 $= k[x^2 - (4)x + 1]$
 $= k[x^2 - 4x + 1]$
When k =1, the quadratic polynomial is $x^2 - 4x + 1$

