June 2020

maths IA concept feature image

Ts Inter Maths IA Concept


This note is designed by ‘Basics in Maths’ team. These notes to do help the TS intermediate first year Math students fall in love with mathematics and overcome the fear.

These notes cover all the topics covered in the TS I.P.E  first year maths 1A syllabus and include plenty of formulae and concept to help you solve all the types of Inter Math problems asked in the I.P.E and entrance examinations.


1.Functions

Set: A collection of well-defined objects is called a set.

Ordered pair: Two elements a and b listed in a specific order form. An ordered pair denoted by (a, b).

Cartesian product: Let A and B are two non-empty sets. The Cartesian product of A and B is denoted by A × B and is defined as a set of all ordered pairs (a, b) where a ϵ A and b ϵB

                           cartesion product              

Relation: Let A and B are two non-empty sets the relation R from A to B is a subset of A×B.

⇒ R: A→B is a relation if  R⊂ A × B

Function:

A relation f: A → B is said to be a function if ∀ aϵ A there exists a unique element b such that (a, b) ϵ f.                                            (Or) 

A relation f: A → B is said to be a function if 

(i) x ϵ A ⇒ f(x) ϵ B 

(ii)  x1 , x2 ϵ A , x1 = x2 in A  ⇒ f(x1) = f(x2) in B.

 Note:   If A, B are two finite sets then the no. of   functions that can be defined from A to B is  n(B)n(A)

VARIOUS TYPES OF FUNCTIONS

One– one Function (Injective):- A function f: A→ B is said to be a one-one function or injective if different elements in A have different images in B.

(Or)

A function f: A→ B is said to be one-one function if f(x1) = f(x2) in B ⇒ x1 = x2 in A.

Note: No. of one-one functions that can be defined from A into B is n(B) p n(A)   if  n(A) ≤ n(B)

On to Function (Surjection): – A function f: A→ B is said to be onto function or surjection if for each yϵ B ∃ x ϵ A such that f(x) =y

onto function

Note: if n(A) = m and n(B) = 2 then no. of onto functions = 2m – 2

 Bijection: – A function f: A→ B is said to be Bijection if it is both ‘one-one and ‘onto’.

bijection

Constant function:  A function f: A→ B is said to be constant function if f(x) = k ∀ xϵA

Identity function:  Let A be a non-empty set, then the function defined by I: A → A, I(x)=x is called identity function on A.

Equal function:  Two functions f and g are said to be equal if

(i)   They have same domain (D)

(ii)  f(x) = g(x) ∀ xϵ D

Even function:  A function f: A→ B is said to be even function if f (- x) = f(x) ∀ xϵ A

Odd function:   A function f: A→ B is said to be odd function if f (- x) = – f(x) ∀ xϵ A

Composite function:  If f: A→B, g: B→C are two functions then the composite relation is a function from A to C.

composite function

gof: A→C is a composite function and is defined by gof(x) = g(f(x)).

Step function:  A number x = I + F

 I → integral part    = [x]

F → fractional part = {x}

∴ x = [x] + {x}

step functionIf y = [x] then domain = R and

Range = Z                                                 

0 ≤ x ≤ 1, [x] = 0

1≤ x ≤ 2, [x] = 1

-1 ≤ x ≤ 0, [x] = -1

If k is any integer [ x + k] = k + [x]

The value of [x] is lies in x – 1 < [x] ≤ 1.

Inverse function: If f: A → B is bijection then f -1  is exists

f-1: B → A is an inverse function of f.

domain and range

in equations

SOME IMPORTANT POINTS

of subsets of a set of n elements is 2n

of proper subsets of a set of n elements is 2n – 1

Let A and B are two non-empty finite sets and f: A → B is a function. This function will

One-one if n(A) ≤ n(B)

On to if n(A) ≥ n(B)

Bijection   if n(A) = n(B).


2. MATHEMATICAL INDUCTION


3. MATRICES

Matrix: An ordered rectangular array of elements is called a matrix

  • Matrices are generally enclosed by brackets like
  • Matrices are denoted by capital letters A, B, C and so on
  • Elements in a matrix are real or complex numbers; real or complex real-valued functions.

Oder of Matrix: A matrix having rows and ‘n’ columns is said to be of order m x n. Read as m by n.

matrix

Types of Matrices

 Square Matrix: A matrix in which the no. of rows is equal to the no. of columns is called a square matrix.

square matrix
 Principal diagonal ( diagonal)  Matrix: If A  = [aij] is a square matrix of order ‘n’ the elements  a11 , a22 , a33 , ………. ann is said to constitute its principal diagonal.

principle diagonal matrix

Trace Matrix: The sum of the elements of the principal diagonal of a square matrix A is called the trace of the matrix. It is denoted by Tr (A).

Ex:-

trace of matrix

Diagonal Matrix: If each non-diagonal element of a square matrix is ‘zero’ then the matrix is called a diagonal matrix.

diagonal of matrix

Scalar Matrix: If each non-diagonal elements of a square matrix are ‘zero’ and all diagonal elements are equal to each other, then it is called a scalar matrix.

scallar matrix

Identity Matrix or Unit Matrix: If each of the non-diagonal elements of a square matrix is ‘zero’ and all diagonal elements are equal to ‘1’, then that matrix is called a unit matrix.

identity matrix

Null Matrix or Zero Matrix: If each element of a matrix is zero, then it is called a null matrix.

null matrix

Row matrix & column Matrix: A matrix with only one row s called a row matrix and a matrix with only one column is called a column matrix.

row and column matrices

Triangular matrices:

A square matrix A = [aij] is said to be upper triangular if aij = 0   ∀ i > j

A square matrix A = [aij] is said to be lower triangular matrix aij = 0  ∀ i < j

triangular matrices

Equality of matrices: matrices A and B are said to be equal if A and B of the same order and the corresponding elements of A and B are equal.

equality of matrices

Product of Matrices:

 Let A = [aik]mxn and B = [bkj]nxp be two matrices ,then the matrix C = [cij]mxp  where

product of matrices

Note: Matrix multiplication of two matrices is possible when no. of columns of the first matrix is equal to no. of rows of the second matrix.

Transpose of Matrix: If A = [aij] is an m x n matrix, then the matrix obtained by interchanging the rows and columns is called the transpose of A. It is denoted by AI or AT.  

transpose of matrix

Note: (i) (AI)I = A (ii) (k AI) = k . AI    (iii)  (A + B )T = AT + BT  (iv)  (AB)T = BTAT

Symmetric Matrix: A square matrix A is said to be symmetric if AT =A

If A is a symmetric matrix, then A + AT is symmetric.

Skew-Symmetric Matrix: A square matrix A is said to be skew-symmetric if AT = -A

If A is a skew-symmetric matrix, then A – AT is skew-symmetric

Minor of an element: Consider a square matrix   

minor of an elemen

the minor an element in this matrix is defined as the determinant of the 2×2 matrix obtained after deleting the rows and the columns in which the element is present.

minor of an element example

Cofactor of an element: The cofactor of an element in i th row and j th column of A3×3 matrix is defined as it’s minor multiplied by (- 1 ) i+j .

Properties of determinants:

  • If each element of a row (column) of a square matrix is zero, then the determinant of that matrix is zero.

det-1

  • If A is a square matrix of order 3 and k is scalar then.
  • If two rows (columns) of a square matrix are identical (same), then Det. Of that matrix is zero.

det-2

  • If each element in a row (column) of a square matrix is the sum of two numbers then its determinant can be expressed as the sum of the determinants.

         det-3

  • If each element of a square matrix are polynomials in x and its determinant is zero when x = a, then (x-a) is a factor of that matrix.
  • For any square matrix A  Det(A) =  Det (AI).
  • Det(AB) = Det(A) . Det(B).
  • For any positive integer n Det(An) = (DetA)n.

Singular and non-singular matrices: A Square matrix is said to be singular if its determinant is zero, otherwise it is said to be the non-singular matrix.

singular and non-singular matrices

Ad joint of a matrix: The transpose of the matrix formed by replacing the elements of a square matrix A with the corresponding cofactors is called the adjoint of A.

adjoint of matrix 2

 Invertible matrix: Let A be a square matrix, we say that A is invertible if there exists a matrix B such that AB =BA = I, where I is the unit matrix of the same order as A and B.

invertible matrix

Augmented matrix: The coefficient matrix (A) augmented with the constant column matrix (D) is called the augmented matrix. It is denoted by [AD].

augmented matrix

Sub matrix: A matrix obtained by deleting some rows and columns (or both) of a matrix is called the submatrix of the given matrix.

sub matrix

Let A be a non-zero matrix. The rank of A is defined as the maximum of the order of the non-singular submatrices of A.

  • Note: If A is a non-zero matrix of order 3 then the rank of A is:
  • 1, if every 2×2 submatrix is singular
  • 2, if A is singular and at least one of its 2×2 sub-matrices is non-singular

   (iii)  3, if A is non – singular.

Consistent and Inconsistent: The system of linear equations is consistent if it has a solution, in-consistent if it has no solution.

  • Note: The system of three equations in three unknowns AX = D has
  • A unique solution if rank(A) = rank ([AD]) = 3
  • Infinitely many solutions if rank (A) = ([AD]) < 3
  • No solution if rank (A) ≠ rank ([AD])

Solutions of a homogeneous system of linear equations:

hogenious equations

The system of equations AX = 0 has

  • The trivial solution only if rank(A) = 3
  • An infinite no. of solutions if rank(A) < 3

4.ADDITION OF VECTORS

Directed line: If A and B are two distinct points in the space, the ordered pair (A, B) denoted by AB is called a directed line segment with initial point A and terminal point B.

directed line

⇒ A directed line passes through three characteristics: (i) length (ii) support (iii) direction

Scalar: A quantity having magnitude only is called a scalar. We identify real numbers as a scalar.

Ex: – mass, length, temperature, etc.

Vector: A quantity having length and direction is called a vector.

Ex: – velocity, acceleration, force, etc.

⇒ If TS inter addition of vectors 4 is a vector then its length is denoted by TS inter addition of vectors 28

Position of vector: If P (x, y, z) is any point in the space, then TS inter addition of vectors 1 is called the position vector of the point P with respect to origin (O). This is denoted by TS inter addition of vectors 2

Like and unlike vectors:  If two vectors are parallel and having the same direction then they are called like vectors.

like vectors

 

If two vectors are parallel and having opposite direction then they are called, unlike vectors.


un like vectors
Coplanar vectors:
Vectors whose supports are in the same plane or parallel to the same plane are called coplanar vectors.

VECTOR ADDITION                                       

Triangle law: If TS inter 1A product of vectors 2 are two vectors, there exist three points A, B, and C in a space such that   defined by TS inter addition of vectors 7

triangle law

Parallelogram law: If two vectorsTS inter 1A vector a and TS inter addition of vectors 5 represented by two adjacent sides of a parallelogram in magnitude and direction then their sum is represented in magnitude and direction by the diagonal of the parallelogram through their common point.

parallelogram law 2                                                                    parallelogram law

Scalar multiplication: LetTS inter 1A vector a be a vector and λ be a scalar then we define vector λTS inter 1A vector a  to be the vectorTS inter addition of vectors 29 if eitherTS inter 1A vector a is zero vector or λ is the scalar zero; otherwise λTS inter 1A vector a is the vector in the direction of TS inter 1A vector awith the magnitude TS inter addition of vectors 9if λ>0 and λTS inter 1A vector a  = (−λ)(−TS inter 1A vector a ) if λ<0.

add. vectors notes

The angle between two non-zero vectors:   LetTS inter 1A product of vectors 2 be two non-zero vectors, let TS inter addition of vectors 10  then ∠AOB has two values. The value of ∠AOB, which does not exceed 1800 is called the angle between the vectorsTS inter 1A vector a and TS inter addition of vectors 5, it is denoted by (TS inter 1A product of vectors 2 ).

TS inter addition of vectors 12

Section formula: LetTS inter 1A product of vectors 2 be two position vectors of the points A and B with respect to the origin if a point P divides the line segment AB in the ratio m:n then

section formula

Linear combination of vectors:  let TS inter addition of vectors 13 be vectors x1, x2, x3…. xn be scalars, then the vectorTS inter addition of vectors 14 is called the linear combination of vectors.

Components: Consider the ordered triad (a, b, c) of non-coplanar vectorsTS inter addition of vectors 15 If r is any vector then there exist a unique triad (x, y, z) of scalars such that TS inter addition of vectors 16 . These scalars x, y, z are called the components of TS inter addition of vectors 2with respect to the ordered triad   (a, b, c).

  • i, j, k are unit vectors along the X, Y and Z axes respectively and P(x, y, z) is any point in the space thenTS inter addition of vectors 1 = r = x i + y j +z k   andTS inter addition of vectors 17

Regular polygon: A polygon is said to be regular if all the sides, as well as all the interior angles, are equal.

  • If a polygon has sides then the no. of diagonals of a polygon is TS inter addition of vectors 18 
  • The unit vector bisecting the angle between  is  TS inter addition of vectors 19

Vector equation of a line and plane

⇒The vector equation of the line passing through point A (TS inter 1A vector a) and ∥el to the vector TS inter addition of vectors 5 is

vector equation of a line

Proof:-

vector equation opf a line 2

 Then AP,  are collinear vector proof: let P (TS inter addition of vectors 2 ) be any point on the line a

TS inter addition of vectors 20      

   the equation of the line passing through origin and parallel to the vectorTS inter addition of vectors 5isTS inter addition of vectors 21      

  • the  vector equation of the line passing through the points A(TS inter 1A vector a )  and B( TS inter addition of vectors 5 )  is TS inter addition of vectors 23
  • Cartesian equation of the line passing through A ( x1, y1, z1) and  B ( x2, y2, z2) is TS inter addition of vectors 22
  • The vector equation of the plane passing through point A(TS inter 1A vector a ) and parallel to the vectors TS inter addition of vectors 5andTS inter 1A vector c is  TS inter addition of vectors 24
  • The vector equation of the plane passing through the point A(TS inter 1A vector a ), B(TS inter addition of vectors 5 ) and parallel to the vector TS inter 1A vector c is TS inter addition of vectors 25
  • The vector equation of the plane passing through the points A(TS inter 1A vector a ), B(TS inter addition of vectors 5 ) and C( TS inter 1A vector c) isTS inter addition of vectors 26

large bar{r}= (1-t)bar{a} + t bar{b}

5.PRODUCT OF VECTORS

TS inter 1A vectors dotproduct title

Dot product (Scalar product): LetTS inter 1A product of vectors 2 are two vectors. The dot product or direct product of TS inter 1A vector a and TS inter 1A vector b  is denoted byTS inter 1A product of vectors 3and is defined as 

  • IfTS inter 1A vector a = 0, TS inter 1A vector b = 0 ⟹ TS inter 1A product of vectors 3  = 0.
  • If TS inter 1A vector a≠0,TS inter 1A vector b ≠ 0 thenTS inter 1A product of vectors 4
  • The dot product of two vectors is a scalar
  • If TS inter 1A product of vectors 2 are two vectors, then

     TS inter 1A product of vectors 1

  • If θ is the angle between the vectorsTS inter 1A product of vectors 2 then. TS inter 1A product of vectors 4

         ⟹    TS inter 1A product of vectors 5

         ⟹ IfTS inter 1A product of vectors 3   > 0, then θ is an acute angle

         ⟹ If  TS inter 1A product of vectors 3  < 0, then θ is obtuse angle 0

          ⟹ If  TS inter 1A product of vectors 3  = 0, thenTS inter 1A vector a  is perpendicular toTS inter 1A vector b

  • IfTS inter 1A vector a is any vector then  TS inter 1A product of vectors 6

Component and Orthogonal Projection:

LetTS inter 1A vector a=TS inter 1A vector OA,TS inter 1A vector b=TS inter 1A vector OB  be two non-zero vectors. Let the plane passing through B (TS inter 1A vector b ) and perpendicular to TS inter 1A vector aintersectsTS inter 1A vector OA

TS inter 1A product of vectors 7

In M, then TS inter 1A vector OM is called the component of TS inter 1A vector b on TS inter 1A vector a

  • The component (projection) vector of TS inter 1A vector b on TS inter 1A vector a is TS inter 1A product of vectors 8
  • Length of the projection (component) =TS inter 1A product of vectors 9
  • Component ofTS inter 1A vector b perpendicular toTS inter 1A vector a = TS inter multiplication of vectors 1

If TS inter 1A vector i,TS inter 1A vector j, TS inter 1A vector k   form a right-handed system of an orthonormal triad, then 

TS inter 1A product of vectors 10

  • If TS inter 1A product of vectors 11 then TS inter 1A product of vectors 3 = a1b1 + a2b2 + a3b3
  • IfTS inter 1A product of vectors 11  then TS inter 1A product of vectors 12

Parallelogram law:TS inter multiplication of vectors 3

In a parallelogram, the sum of the squares of the lengths of the diagonals is equal to the sum of the squares of the lengths of its sides.

TS inter multiplication of vectors 2

In ∆ABC, the length of the median through vertex A is TS inter multiplication of vectors 4

Vector equation of a plane:TS inter multiplication of vectors 10

The vector equation of the plane whose perpendicular distance from the origin is p and unit normal drawn from the origin towards the plane is,TS inter multiplication of vectors 5

•The vector equation of the plane passing through point A (TS inter 1A vector a ) and perpendicular to theTS inter multiplication of vectors 6 isTS inter multiplication of vectors 7

•If θ is the angle between the planes TS inter multiplication of vectors 8 then TS inter multiplication of vectors 9


TS inter VECTORS Cross product 1

Cross product (vector product): Let TS inter 1A vector aandTS inter addition of vectors 5 be two non-zero collinear vectors. The cross product of TS inter 1A vector a  and TS inter addition of vectors 5  is denoted by TS inter 1A vector a×TS inter addition of vectors 5  (read as a cross ) and is defined as TS inter VECTORS Cross product 2

TS inter VECTORS Cross product 3

TS inter VECTORS Cross product 4are orthogonal triad then

TS inter VECTORS Cross product 5

• The vectorTS inter 1A vector a ×TS inter addition of vectors 5 is perpendicular to both TS inter 1A vector a and TS inter addition of vectors 5 and also perpendicular to the plane containing themTS inter VECTORS Cross product 6

• The unit vector perpendicular to bothTS inter 1A vector a and TS inter addition of vectors 5  isTS inter VECTORS Cross product 7

• LetTS inter VECTORS Cross product 8 then TS inter VECTORS Cross product 9

• If TS inter 1A vector aand TS inter addition of vectors 5 are two sides of a triangle then the area of the triangle =TS inter VECTORS Cross product 10

• If A (TS inter 1A vector a ), B ()and C (TS inter 1A vector c )are the vertices of a ∆ABC, then its areaTS inter VECTORS Cross product 12

TS inter VECTORS Cross product 11

• The area of the parallelogram whose adjacent sidesTS inter 1A vector a and TS inter addition of vectors 5   is TS inter VECTORS Cross product 13

• The area of the parallelogram whose diagonals TS inter 1A vector a and TS inter addition of vectors 5   is   TS inter VECTORS Cross product 10

• If A (TS inter 1A vector a ), B (TS inter addition of vectors 5 )and C (TS inter 1A vector c )are three points then the perpendicular distance from A to the line passing through B, C is

TS inter VECTORS Cross product 14


TS inter scallar tripple product 1

LetTS inter 1A vector a,TS inter addition of vectors 5andTS inter 1A vector c be three vectors, then (TS inter scallar tripple product 3) . TS inter 1A vector c is called the scalar triple product ofTS inter 1A vector a,TS inter addition of vectors 5andTS inter 1A vector cand it is denoted byTS inter scallar tripple product 2
TS inter scallar tripple product 4
IfTS inter VECTORS Cross product 8TS inter scallar tripple product 21then
TS inter scallar tripple product 5
•In determinant rows(columns) are equal then the det. Value is zero.
•In a determinant, if we interchange any two rows or columns, then the sign of det. Is change.
•Four distinct points A, B, C, and D are said to be coplanar iff TS inter scallar tripple product 6
The volume of parallelepiped:
If TS inter 1A vector a,TS inter addition of vectors 5andTS inter 1A vector care edges of a parallelepiped then its volume is TS inter scallar tripple product 7
The volume of parallelepiped:
The volume of Tetrahedron withTS inter 1A vector a,TS inter addition of vectors 5 andTS inter 1A vector c are coterminous edges isTS inter scallar tripple product 8
The volume of Tetrahedron whose vertices are A, B, C and D is  TS inter scallar tripple product 9
Vector equation of a plane:
The vector equation of the plane passing through point A (TS inter 1A vector a) and parallel to the vectorsTS inter addition of vectors 5 and TS inter 1A vector cis TS inter scallar tripple product 10
The vector equation of the plane passing through the points A ( TS inter 1A vector a) and B( TS inter addition of vectors 5) and parallel to the vectorTS inter 1A vector c isTS inter scallar tripple product 11
The vector equation of the plane passing through the points A (TS inter 1A vector a), B( TS inter addition of vectors 5) and C(TS inter 1A vector c ) is TS inter scallar tripple product 12
Skew lines:TS inter scallar tripple product 13
The lines which are neither intersecting nor parallel are called Skew lines

The shortest distance between the Skew lines:
If TS inter scallar tripple product 16 are two skew lines, then the shortest distance between them is TS inter scallar tripple product 14

 
If A, B, C and D are four points, then the shortest distance between the line joining the points AB and CD is TS inter scallar tripple product 15

•The plane passing through the intersection of the planesTS inter scallar tripple product 17 is TS inter scallar tripple product 18
the perpendicular distance from point A (a ̅) to the plane TS inter scallar tripple product 19 is TS inter scallar tripple product 20

TS inter 1A vector tripple product 1

Let TS inter 1A vector a,TS inter addition of vectors 5andTS inter 1A vector c be three vectors, thenTS inter 1A vector tripple product 2 is called the vector triple product ofTS inter 1A vector a,TS inter addition of vectors 5 andTS inter 1A vector c.

TS inter 1A product of four vectors 1

Scalar product of four vectors:

TS inter 1A scalar product of four vectors 1

Vector product of four vectors:

TS inter 1A vector product of four vectors 1


6. TRIGONOMETRY UPTO TRANSFORMATIONS

The word ’trigonometry’ derived from the Greek words ‘trigonon’ and ‘metron’. The word ‘trigonon’ means a triangle and the word ‘metron’ means a measure.

Angle: An angle is a union of two rays having a common endpoint in a plane.

There are three systems of measurement of the angles.

  • Sexagesimal system (British system)
  • Centesimal system (French system)
  • Circular measure (Radian system)

Sexagesimal system: – In this system, a circle can be divided into 360 equal parts. Each part is called one degree (0). One circle = 3600

Further, each degree can be divided into 60 equal parts. Each part is called one minute (‘).

and each minute can be divided into 60 equal parts. Each part is called one second (“)

Sexagesimal system: – In this system, a circle can be divided into 400 equal parts. Each part is called one grade (g). One circle = 400g

Further, each grade can be divided into 100 equal parts. Each part is called one minute (‘).

and each minute can be divided into 100 equal parts. Each part is called one second (“)

Circular measure: Radian is defined as the amount of the angle subtended by an arc of length ’r’ of a circle of radius ‘r’.

One radian is denoted by 1c. One circle = 2πc

 Relation between the three measures:

3600 = 400g = 2 πc

1800 = 200g = πc

TS inrer relation betwee the measurements

Trigonometric Ratios:TS inter trigonometric ratios1

TS inter trigonometric ratios

 Trigonometric identities: –

∗ sin2θ + cos2θ = 1

        1 – cos2θ = sin2θ

        1 – sin2θ = cos2θ

∗ sec2θ − tan2θ = 1

 sec2θ = 1 + tan2θ

tan2θ = sec2θ – 1

(secθ − tanθ) (secθ + tanθ) = 1

TS inter trigonometric identities 1

 ∗  cosec2θ − cot2θ = 1

         co sec2θ = 1 + cot2θ

cot2θ = cosec2θ – 1

(cosec θ – cot θ) (cosec θ + cot θ) = 1

TS inter trigonometric identities 2

• sin θ. cosec θ = 1

sec θ. cos θ = 1

tan θ. cot θ = 1

All Silver Tea Cups Rule:

TS inrer trigonometry all silver tea cups

Note: If 900 ±θ or 2700 ±θ then

‘sin’ changes to ‘cos’; ‘tan’ changes to ‘cot’; ‘sec’ changes to ‘cosec’

‘cos’ changes to ‘sin’; ‘cot’ changes to ‘tan’; ‘cosec’ changes to ‘sec’.

If 1800 ±θ or 3600 ±θ then, no change in ratios.

Values of Trigonometric Ratios:

TS inrer trigonometry ratios

TS inter trigonometric ratios values

Complementary angles: Two angles A and B are said to be complementary angles, if A + B = 900.

supplementary angles: Two angles A and B are said to be supplementary angles, if A + B = 1800.

TS inrer trigonometry periodic fu

Let E ⊆ R and f: E → R be a function, then f is called periodic function if there exists a positive real number ‘p’ such that

  • (x + p) ∈ E ∀ x∈ E
  • F (x+ p) = f(x) ∀ x∈ E

If such a positive real number ‘p’ exists, then it is called a period of f.

TS inrer trigonometry periodic functions1

TS inrer trigonometry COMPOUND AANGLES 1

The algebraic sum of two or more angles is called a ‘compound angle’.

 For any two real numbers A and B

sin (A + B) = sin A cos B + cos A Cos B

sin (A − B) = sin A cos B − cos A Cos B

cos (A + B) = cos A cos B − sin A sin B

cos (A − B) = cos A cos B + sin A sin B

tan (A + B) =

tan (A − B) =ts inter ttrriggonomertty compound angles 2

cot (A + B) =ts inter ttrriggonomertty compound angles 3

⋇ cot (A − B) = ts inter ttrriggonomertty compound angles 4

sin (A + B + C) = ∑sin A cos B cos C − sin A sin B sin C 

cos (A + B + C) = cos A cos B cos C− ∑cos A sin B sin C 

tan (A + B + C) =ts inter ttrriggonomertty compound angles 5

⋇ cot (A + B + C) =ts inter ttrriggonomertty compound angles 6

⋇ sin (A + B) sin (A – B) = sin2 A – sin2 B = cos2 B – cos2 A

⋇ cos (A + B) cos (A – B) = cos2 A – sin2 B = cos2 B – sin2 A

ts inter ttrriggonomertty compound angles 11

Extreme values of trigonometric functions:

If a, b, c ∈ R such that a2 + b2 ≠ 0, then

Maximum value = ts inter ttrriggonomertty compound angles 12

Minimum value =ts inter ttrriggonomertty compound angles 13

ts inter trigonometry Multiple and submultiple angles 1

If A is an angle, then its integral multiples 2A, 3A, 4A, … are called ‘multiple angles ‘of A and the multiple of A by fraction likets inter trigonometry Multiple and submultiple angles 2are called ‘submultiple angles.

⋇ sin 2A = 2 sin A cos A =ts inter trigonometry Multiple and submultiple angles 5

⋇ cos 2A = cos2 A – sin2 A

                 = 2 cos2 A – 1

                 = 1 – 2sin2 A

                =ts inter trigonometry Multiple and submultiple angles 6

⋇ tan 2A =ts inter trigonometry Multiple and submultiple angles 3

⋇ cot 2A =ts inter trigonometry Multiple and submultiple angles 4

∎ If ts inter trigonometry Multiple and submultiple angles 7  is not an add multiple of ts inter trigonometry Multiple and submultiple angles 8

⋇ sin A = 2 sints inter trigonometry Multiple and submultiple angles 7  costs inter trigonometry Multiple and submultiple angles 7  =ts inter trigonometry Multiple and submultiple angles 10

⋇ cos A = cos2 ts inter trigonometry Multiple and submultiple angles 7  – sin2 ts inter trigonometry Multiple and submultiple angles 7

                 = 2 cos2 ts inter trigonometry Multiple and submultiple angles 7   – 1

                 = 1 – 2sin2 ts inter trigonometry Multiple and submultiple angles 7

                  =ts inter trigonometry Multiple and submultiple angles 9

⋇ tan A =ts inter trigonometry Multiple and submultiple angles 11

⋇ cot A =ts inter trigonometry Multiple and submultiple angles 12

ts inter trigonometry Multiple and submultiple angles 13

⋇ sin3A = 3 sin A −4 sin3 A

⋇ cos 3A = 4 cos3 A – 3 cos A

⋇ tan 3A =ts inter trigonometry Multiple and submultiple angles 14

⋇ cot 3A =ts inter trigonometry Multiple and submultiple angles 15

⋇ tan A + cot A = 2 cosec 2A

⋇ cot A – tan A = 2 cot 2A

ts inter trigonometry Multiple and submultiple angles 16

TS inter tranformations10

For A, B∈ R

⋇ sin (A + B) + sin (A – B) = 2sin A cos B

⋇ sin (A + B) −sin (A – B) = 2cos A sin B

⋇ cos (A + B) + cos (A – B) = 2 cos A cos B

⋇ cos (A + B) − cos (A – B) = − 2sin A sin B

For any two real numbers C and D

⋇ sin C + sin D = 2sinTS inter tranformations1 cosTS inter tranformations2

⋇ sin C −sin D= 2cosTS inter tranformations1  sinTS inter tranformations2

⋇ cos C + cos D = 2 cosTS inter tranformations1cos TS inter tranformations2

⋇ cos C − cos D = − 2sinTS inter tranformations1   sinTS inter tranformations2   

If A + B + C = π or 1800, then

⋇ sin (A + B) = sin C; sin (B + C) = sin A; sin (A + C) = sin B

⋇ cos (A + B) = − cos C; cos (B + C) = −cos A; cos (A + C) = − cos B

If A + B + C = 900 orts inter trigonometry Multiple and submultiple angles 8  then

⋇ sin TS inter tranformations4  = cosTS inter tranformations5  ; sinTS inter tranformations6    = cosTS inter tranformations7  ; sinTS inter tranformations8    = cosTS inter tranformations9

 

⋇ cos TS inter tranformations4   = sinTS inter tranformations5 ; cosTS inter tranformations6    = sinTS inter tranformations7 ; cos TS inter tranformations8   = sinTS inter tranformations9

If TS inter tranformations3 then

⋇ sin (A + B) = cos C; sin (B + C) = cos A; sin (A + C) = cos B

⋇ cos (A + B) = sin C; cos (B + C) = sin A; cos (A + C) = sin B


 7. TRIGONOMETRIC EQUATIONS

Trigonometric equation: An equation consisting of the trigonometric functions of a variable angle θ ∈ R is called a ‘trigonometric equation’.

The solution of the equation: The values of the variable angle θ, satisfying the given trigonometric equation is called a ‘solution’ of the equation.

The set of all solutions of the trigonometric equation is called the solution set’ of the equation. A ‘general solution’ is an expression of the form θ0 + f(n) where θ0 is a particular solution and f(n) is a function of n ∈ Z involving π.

If k ∈ [− 1, 1] then the principle solution of θ of sin x = k lies in TS inter trigonometric equations1  

General solution of sin x = sin θ is x = nπ + (−1) n θ, n ∈ Z

If k ∈ [− 1, 1] then the principle solution of θ of cos x = k lies in   TS inter trigonometric equations2

General solution of cos x = cos θ is x = 2nπ ± θ, n ∈ Z

If k ∈R then the principle solution of θ of tan x = k lies in TS inter trigonometric equations3  

General solution of tan x = tan θ is x = nπ + θ n ∈ Z

If sin θ = 0, then the general solution is θ = nπ, n ∈ Z

If tan θ = 0, then the general solution is θ = nπ, n ∈ Z

If cos θ = 0, then the general solution is θ = (2n + 1)ts inter trigonometry Multiple and submultiple angles 8 , n ∈ Z

If sin2 θ = sin2 𝛂, cos2 θ = cos2 𝛂 or tan2 θ = tann2 𝛂 then the general solution is 𝛉 = nπ ± θ, n ∈ Z


8.INVERSE TRIGONOMETRIC FUNCTIONS

If A, B are two sets and f: A→ B is a bijection, then f-1 is existing and f-1: B → A is an inverse function.

The function Sin-1: [−1, 1] →TS inter inverse trigonometric functions1 is defined by Sin-1 x = θ ⇔ θ∈ TS inter inverse trigonometric functions1 and sin θ = x

The function Cos-1: [−1, 1] → [0, π] is defined by Sin-1 x = θ ⇔ θ∈ [0, π] and cos θ = x

The function Tan-1: R →TS inter inverse trigonometric functions2  is defined by Tan-1 x = θ ⇔ θ∈TS inter inverse trigonometric functions2  and tan θ = x

The function Sec-1: [−∞, −1] ∪ [1, ∞] →TS inter inverse trigonometric functions5 is defined by Sin-1 x = θ ⇔ θ∈TS inter inverse trigonometric functions5 and sec θ= x

The function Cosec-1: [−∞, −1] ∪ [1, ∞] →TS inter inverse trigonometric functions6   is defined by cosec-1 x = θ ⇔ θ∈TS inter inverse trigonometric functions6 and Cosec θ= x

The function Cot-1: R → (0, π) is defined by Cot-1 x = θ ⇔ θ ∈ (0, π) and cot θ = x

TS inter domain and range of inverse trigonometric functions

Properties of Inverse Trigonometric functions:

Sin-1 x = Cosec-1(1/x) ∀ x ∈ [−1, 1] – {0}

Cos-1x = Sec-1(1/x) ∀ x ∈ [−1, 1] – {0}

Tan-1 x = Cot-1(1/x), if x > 0

Tan-1 x = Cot-1(1/x) −π, if x < 0

Sin-1 (−x) = − Sin-1(x) ∀ x ∈ [−1, 1]

Cos-1 (−x) = π − Cos-1(x) ∀ x ∈ [−1, 1]

Tan-1 (−x) = − Tan-1(x) ∀ x ∈ R

Cosec-1 (−x) = − Cose-1(x) ∀ x ∈ (− ∞, − 1] ∪ [1, ∞)

Sec-1 (−x) = π − Sec-1(x) ∀ x ∈ (− ∞, − 1] ∪ [1, ∞)

Cot-1 (−x) =π − Cot-1(x) ∀ x ∈ R 

 (i) If θ∈TS inter inverse trigonometric functions1, then Sin−1(sin θ) = θ and if x ∈ [−1, 1], then sin (Sin−1x) = x

 (ii) If θ∈ [0, π], then Cos−1(cos θ) = θ and if x ∈ [−1, 1], then cos (Cos−1x) = x

 (iii) If θ∈TS inter inverse trigonometric functions2 , then tan−1(tann θ) = θ and if x ∈ R, then tan (Tan−1x) = x

 (iv) If θ∈ (0, π), then Cot−1(cot θ) = θ and if x ∈ R, then cot (Cot−1x) = x

 (v) If θ∈ [0, TS inter inverse trigonometric functions12) ∪ (TS inter inverse trigonometric functions12 , π], then Sec−1(sec θ) = θ and

 if x ∈ (− ∞, − 1] ∪ [1, ∞), then sec (Sec−1x) = x

 (vi) If θ∈ TS inter inverse trigonometric functions6 , then Cosec−1(cosec θ) = θ and

if x ∈ (− ∞, − 1] ∪ [1, ∞), then cosec (Cosec−1x) = x

(i) If θ∈TS inter inverse trigonometric functions1 , then Cos−1(sin θ) = TS inter inverse trigonometric functions7

 (ii) If θ∈ [0, π], then Sin−1(cos θ) =TS inter inverse trigonometric functions7

 (iii) If θ∈TS inter inverse trigonometric functions2 , then Cot−1(tan θ) =TS inter inverse trigonometric functions7

 (iv) If θ∈ (0, π), then Tan−1(cot θ) =TS inter inverse trigonometric functions7

 (v) If θ∈ TS inter inverse trigonometric functions5, then Cosec−1(sec θ) =TS inter inverse trigonometric functions7

 (vi) If θ∈TS inter inverse trigonometric functions6 , then Sec−1(cosec θ) =TS inter inverse trigonometric functions7

  1. Sin1x = Cos( TS inter inverse trigonometric functions8)if 0 ≤ x ≤ 1 and Sin1x =− Cos1 ( TS inter inverse trigonometric functions8) if −1 ≤ x ≤ 0
  2. Sin1x = Tan1TS inter inverse trigonometric functions9 if x ∈ (−1, 1)
  3. Cos1x = Sin1 (TS inter inverse trigonometric functions13) if x ∈ [0, 1] and Cos1x = π − Sin1 (TS inter inverse trigonometric functions13)  if x ∈ [−1, 0]
  1. Tan1x = Sin1TS inter inverse trigonometric functions10 = Cos−1 TS inter inverse trigonometric functions11or x > 0

Cos−1 x + Sin−1x = TS inter inverse trigonometric functions12  ∀ x ∈ [−1, 1]

Tan−1 x + Cot−1x =TS inter inverse trigonometric functions12  ∀ x ∈ R

Sec−1 x + Cosec−1x = TS inter inverse trigonometric functions12 ∀ x ∈ (−∞, −1] ∪ [1, ∞) 

Sin−1 x + Sin−1y = Sin−1(x TS inter inverse trigonometric functions14 + yTS inter inverse trigonometric functions13  ) if 0 ≤x ≤ 1, 0 ≤y ≤ 1and x2 + y2 ≤ 1

                                    =π− Sin−1(x TS inter inverse trigonometric functions14 + y TS inter inverse trigonometric functions13 ) if 0 ≤x ≤ 1, 0 ≤y ≤ 1and x2 + y2 > 1

Cos−1 x + Cos−1y = Cos−1(x y −TS inter inverse trigonometric functions13  TS inter inverse trigonometric functions14 ) if 0 ≤x, y ≤ 1and x2 + y2 ≥ 1

                                    =π− Cos−1(x y −TS inter inverse trigonometric functions13 TS inter inverse trigonometric functions14  ) if 0 ≤x ≤ 1, 0 ≤y ≤ 1and x2 + y2 < 1

Tan−1 x + Tan−1y = Tan−1TS inter inverse trigonometric functions15  if x > 0, y> 0 and xy < 1

                                    =π + Tan−1 TS inter inverse trigonometric functions15 if x > 0, y> 0 and xy > 1

                                    =   Tan−1 TS inter inverse trigonometric functions15if x < 0, y< 0 and xy > 1

                                  = −π + Tan−1TS inter inverse trigonometric functions15  if x < 0, y< 0 and xy < 1

Tan−1 x − Tan−1y = Tan−1 TS inter inverse trigonometric functions16 if x > 0, y> 0 or x < 0, y< 0

2 Sin−1 x = Sin−1 (2x ) if x≤TS inter inverse trigonometric functions17

                       = π− Sin−1 (2x ) if x >TS inter inverse trigonometric functions17

2 Cos−1 x = Cos−1(2x2 – 1) if x ≥TS inter inverse trigonometric functions17

                        =Cos−1(1–2x2) if x <TS inter inverse trigonometric functions17

2 Tan−1 x = Tan−1 TS inter inverse trigonometric functions23 ifTS inter inverse trigonometric functions18 < 1

                         = π + Tan−1 TS inter inverse trigonometric functions23 ifTS inter inverse trigonometric functions18 ≥ 1

                         = Sin−1 TS inter inverse trigonometric functions19 if x ≥ 0

                         = Cos−1 TS inter inverse trigonometric functions20 if x ≥ 0

3Sin−1x = Sin−1(3x – 4x3)

3Cos−1x = Cos−1(4x3 – 3x)

3Tan−1x = tan−1TS inter inverse trigonometric functions21


9.HYPERBOLIC FUNCTIONS

TS inter Hyperbolic functions 1

The function f: R→R defined by f(x) =  ∀ x ∈ R is called the ‘hyperbolic sin’ function. It is denoted by sinh x.

∴ sinh x =TS inter Hyperbolic functions 2

Similarly,

cosh x = TS inter Hyperbolic functions 3 ∀ x ∈ R 

tanh x = TS inter Hyperbolic functions 4 ∀ x ∈ R 

coth x =TS inter Hyperbolic functions 5  ∀ x ∈ R

sech x = TS inter Hyperbolic functions 6  ∀ x ∈ R

cosech x = TS inter Hyperbolic functions 7  ∀ x ∈ R

Identities:

cosh2x – sinh2 x = 1

    cosh2x = 1 + sinh2 x

    sinh2 x = cosh2 x – 1

sech2 x = 1 – tanh2 x

    tanh2 x = 1 – sech2 x

cosech2 x = coth2 x – 1

     coth2 x = 1 + coth2 x

Addition formulas of hyperbolic functions:

sinh (x + y) = sinh x cosh y + cosh x sinh y

sinh (x − y) = sinh x cosh y − cosh x sinh y

cosh (x + y) = cosh x cosh y + sinh x sinh y  

cosh (x − y) = cosh x cosh y − sinh x sinh y  

tanh (x + y) = TS inter Hyperbolic functions 8

tanh (x − y) = TS inter Hyperbolic functions 9

coth (x + y) =TS inter Hyperbolic functions 10  

sinh 2x = 2 sinh x cosh 2x = TS inter Hyperbolic functions 11

cosh 2x = cosh2x + sinh2 x = 2 cosh2x – 1 = 1 + 2 sinh2x =TS inter Hyperbolic functions 12

tanh 2x =TS inter Hyperbolic functions 13

sinh 3x = 3 sinh x + 4 sinh3x

cosh 3x = 4 cosh3 x – 3 cosh x

tanh 3x = TS inter Hyperbolic functions 14

Inverse hyperbolic functions:

Sinh−1x =TS inter Hyperbolic functions 15  ∀ x ∈ R

Cosh−1x = TS inter Hyperbolic functions 21  ∀ x ∈ (1, ∞)

Tanh−1x = TS inter Hyperbolic functions 16   ∀ TS inter inverse trigonometric functions18< 1

Coth−1x = TS inter Hyperbolic functions 17   ∀ TS inter inverse trigonometric functions18> 1

Sech−1x = TS inter Hyperbolic functions 18   ∀ x ∈ (0, 1]

Cosech−1x = TS inter Hyperbolic functions 19   if x < 0 and x ∈ (−∞, 0)

                         = TS inter Hyperbolic functions 18  if x > 0

TS inter Hyperbolic functions 20


10. PROPERTIES OF TRIANGLES

 In ∆ABC,TS inter Properties of triangles 1

Lengths AB = c; BC = a; AC =b

Area of the tringle is denoted by ∆.

Perimeter of the triangle = 2s = a + b + c

A = ∠CAB; B = ∠ABC; C = ∠BCA.

R is circumradius.

Sine rule:

In ∆ABC,

TS inter Properties of triangles 2

 ⟹ a = 2R sin A; b = 2R sinB; c = 2R sin C

Where R is the circumradius and a, b, c, are lengths of the sides of ∆ABC.

Cosine rule:

In ∆ABC,

a2 = b2 + c2 – 2bc cos A    ⟹cos A = TS inter Properties of triangles 3

b2 = a2 + c2 – 2ac cos B    ⟹ cos B = TS inter Properties of triangles 4

c2 = a2 + b2 – 2ab cos C    ⟹ cos A = TS inter Properties of triangles 5

projection rule:

In ∆ABC,

a = b cos C + c cos B

b = a cos C + c cos A

c = a cos B + b cos A

Tangent rule (Napier’s analogy):

In ∆ABC,

TS inter Properties of triangles 6

Half angle formulae and Area of the triangle:TS inter Properties of triangles 8

In ∆ABC, a, b, and c are sides

TS inter Properties of triangles 7   and area of the triangle TS inter Properties of triangles 13

1.Half angle formulae: –

TS inter Properties of triangles 9

TS inter Properties of triangles 10

TS inter Properties of triangles 11

TS inter Properties of triangles 12

2.Formulae for ∆: – 

∆ = ½ ab sinC= ½ bc sin A=½ ac sin B

  TS inter Properties of triangles 13  where TS inter Properties of triangles 7

   = 2R2sin A sin B sinC

   = r.s

   =TS inter Properties of triangles 14

  =TS inter Properties of triangles 15

In circle and Excircles of a triangle:TS inter Properties of triangles 16

⋇The circle that touches the three sides of an ∆ABC internally is called ‘incircle’. The centre of the incircle is ‘I’ and the radius is ‘r’.

Formulae for ‘r’: –

r = TS inter Properties of triangles 27

 = (s – a) tanTS inter Properties of triangles 17  = (s – b) tanTS inter Properties of triangles 18  = (s – c) tanTS inter Properties of triangles 19

 = 4R sinTS inter Properties of triangles 17sinTS inter Properties of triangles 18 sinTS inter Properties of triangles 19

 =TS inter Properties of triangles 20

The circle that touches the side BC internally and the other two sides AB and AC externally is called the ‘Excircle’ opposite to the angle A. Its centre is I1 and the radius is r1. A TS inter Properties of triangles 21triangle has three ex circles. The remaining circles centre and radius are respectively I2, r2 and I3, r3.

  Formulae for ‘r1’: –

r1 = TS inter Properties of triangles 22

 = s tan TS inter Properties of triangles 17 

= (s – b) cotTS inter Properties of triangles 19  = (s – c) cotTS inter Properties of triangles 18

 = 4R sinTS inter Properties of triangles 17  cosTS inter Properties of triangles 18  cosTS inter Properties of triangles 19

 =TS inter Properties of triangles 23

Formulae for ‘r2’: –

r2 = TS inter Properties of triangles 24

= s tanTS inter Properties of triangles 18   

 = (s – c) cotTS inter Properties of triangles 17  = (s – a) cotTS inter Properties of triangles 19

= 4R cosTS inter Properties of triangles 17  sinTS inter Properties of triangles 18 cosTS inter Properties of triangles 19

 =TS inter Properties of triangles 25 

Formulae for ‘r3’: –

r3 = TS inter Properties of triangles 28

 = s tanTS inter Properties of triangles 19

= (s – a) cot TS inter Properties of triangles 18 = (s – b) cotTS inter Properties of triangles 17

 = 4R cosTS inter Properties of triangles 17  cosTS inter Properties of triangles 18  sinTS inter Properties of triangles 19

 =TS inter Properties of triangles 26


Visit my Youtube Channel: Click on Below Logo

My Youtube channel Logo

 

10 వ తరగతి గణితం ముఖ చిత్రం

TS 10th Class Maths Concept (T/M)

10 వ తరగతి గణితం నోట్స్

 

10 వ తరగతి గణిత శాస్త్రాన్ని  అధ్యయనం చేయడం అంటే, పిల్లలు తమ స్వంత అభ్యాసానికి బాధ్యత వహిస్తారు మరియు సమస్యలను పరిష్కరించడానికి భావనలను వర్తింపజేయడం నేర్చుకుంటారు.

ఈ విషయం   . ఈ గమనికలు విద్యార్థులకు గణితంను ఇస్టపడేలా   మరియు భయాన్ని అధిగమించడానికి సహాయపడతాయి.


1. వాస్తవ సంఖ్యలు

మనం ముందు తరగతులలో వివిధ రకాలైన సంఖ్యలను గురించి తెలుసుకున్నాము .అంటే సహజ సంఖ్యలు, పూర్ణాంకాలు, పూర్ణ సంఖ్యలు, కరణీయ , అకరణీయ సంఖ్యలను గురించి నేర్చుకున్నాము .

అకరణీయ సంఖ్యలు : p,q లు పూర్ణ  సంఖ్య లై  , q ≠ 0 అయిన సందర్భం లో   రూపం లో రాయగల సంఖ్య లను  అకరణీయ సంఖ్యలు అంటారు . దీనిని Q తో సూచిస్తారు .

ఉదా :- మొదలగునవి.

కరణీయ సంఖ్యలు   రూపం లో రాయలేని సంఖ్యలను కరణీయ సంఖ్యలు అంటారు . దీనిని  QI  లేదా S  తో సూచిస్తారు .

ఉదా :- మొదలగునవి.

వాస్తవ సంఖ్యలు : అకరణీయ , కరణీయ సంఖ్యల సమూహాన్ని వాస్తవ సంఖ్యలు అంటారు .

కింది పటములో మనం వీటిని చూడ వచ్చు.

వాస్తవ సంఖ్యలు

 

భాగహార శేష నిధి :

a, b అనే ధన పూర్ణాంకాలు ఇచ్చినప్పుడు a = b q + r, 0≤ r <b అయ్యే విధంగా ఏకైక జత పూర్ణాంకాలు q ,r లు వ్యవస్తితం అవుతాయి.

ఇది అందరికి తెలిసినప్పటికీ యూక్లిడ్ పుస్తకాల సంకలనం లోని 7 వ పుస్తకం లో మొట్టమొదటగా నమోదు చేయడం జరిగింది.

ఈ భాగహార శేషనిధి మీద యూక్లిడ్ భాగహార శేష  నిధి ఆధారపడి ఉంది.

యూక్లిడ్ భాగహార శేషనిధి  కేవలం ధన పూర్ణ సంఖ్యల పైనే నిర్వచించ బడినా , దానిని అన్ని శూన్యేతర పూర్ణ సంఖ్యలకు అనువర్తింప చేయవచ్చు .  

యూక్లిడ్ భాగహార శేషనిధి ఉపయోగించి గ . సా . భా ను కనుక్కోవడం :

రెండు ధన పూర్ణ సంఖ్యల సామాన్య కారాణాంకాలలోని అతి పెద్ద కారణాo న్కాన్ని గ .సా. భా అంటారు .

ఉదా:- 9 , 24  ల గ . సా .భా కనుక్కోవడం

దీనిని  24 = 9×2 + 18 గా రాయవచ్చు

division

9 , 24  కన్నా పెద్దది   కావున 24 ను 9 చే భాగిస్తే శేషం 6 వస్తుంది

పై దానిలో ని  భాజకం 9  మరియు  6  పై  యూక్లిడ్ న్యాయాన్ని అనువర్తింప చేయగా

9 = 6 ×1  + 3  గా రాయవచ్చు

 పై దానిలో ని  భాజకం 6  మరియు  శేషం 3  పై  యూక్లిడ్ న్యాయాన్ని అనువర్తింప చేయగా  దానిని         

6  = 3 ×2   + 0   గా రాయవచ్చు

పై దాని లో శేషం సున్నా  వచ్చింది

కావున 9 , 24  ల గ . సా .భా 3 అవుతుంది.

ప్రాథమిక అంకగణిత సిద్ధాంతం :

ప్రతి సంయుక్త సఖ్యను ప్రదానానంకముల లబ్దంగా రాయవచ్చు  మరియు ప్రధాన కారణాంకాల క్రమం ఏదైనప్పటికీ ఈ కారణాంకాల లబ్దం ఏకైకం .

ఒక సంయుక్త సంఖ్య x  ను  x = p 1  p 2 ….p  n  అని రాయవచ్చు . దీనిలో p 1 , p 2, …., p  n ఆరోహణ క్రమం లో రాయబడిన ప్రధానాంకాలు , అంటే     p 1≤  p 2 ≤….≤  p  n.  

ఈ సందర్భం లో ఒకే రకమైన ప్రదానంకములు వాడినచో వాటిని ప్రధానాంకాల ఘా తాoకాలుగా రాస్తాము . ఒకసారి మనం ఈ సంఖ్యలు ఆరోహణ క్రమంలో ఉన్నాయని భావిస్తే . అప్పుడు లబ్దం ఏకైకం .

ఉదా :- 360 = 3×3×2× 2 × 2 × 5 = 32 × 23  × 5  

ప్రధాన కారణాంకాల లబ్ద పద్ధతి ద్వారా గా. సా . భా  మరియు  కా . సా . గు  కనుక్కోవడం;

9 , 24 ల గ . సా .భా  మరియు కా. సా . గు. కనుక్కోవడం

  9 యొక్క ప్రధాన కారణాంకాలు = 3 × 3 =  3

  24 యొక్క ప్రధాన కారణాంకాలు = 2 × 2 ×2 × 3 = 23 ×31  

  9 , 24  ల గ . సా .భా  = 31  = 3 ( సంక్యల యొక్క సామాన్య  కారణాంకంల కనిష్ఠ ఘాతాల లబ్ధం )

 9 , 24  ల  కా. సా . గు.= 32× 23 = 9×8 = 72 (సంఖ్యల యొక్క కారణాంకంల గరిష్ఠ ఘాతాల లబ్ధం)

అకరణీయ సంఖ్యలు మరియు వాటి దశాంశ రూపాలు :

x అనేది ఒక అకరణీయ సంఖ్య మరియు దీని ధశాంశ రూపం ఒక అంతమయ్యే దశాంశము ,అయినప్పుడు x ను p, q లు పరస్పర ప్రధా నాంకములు అయివున్న p /q రూపం లో వ్యక్త పరచవచ్చు . మరియు q యొక్క ప్రధాన కారాణాంకాల లబ్దం 2m 5 n  అగును ,  n ,m లు  ఋణేతర పూర్ణ సంఖ్యలు .

పై దాని విపర్యయం ఇలా ఉంటెుంది

• n ,m లు ఋణేతర పూర్ణ సంఖ్యలు  మరియు q యొక్క ప్రధాన కారాణాంకాల లబ్దం 2m 5 n  కలిగినటువంటి అకరణీయ సంఖ్య x = p /q అయిన,  xయొక్క  ధశాంశ రూపం ఒక  అంతమయ్యే దశాంశము  అగును ,

terminating decimal

• n ,m లు ఋణేతర పూర్ణ సంఖ్యలు మరియు q యొక్క ప్రధాన కారాణాంకాల లబ్దం 2m 5 n  రూపంలో లేకుంటే ,  అకరణీయ సంఖ్య x = p /q అయిన,  xయొక్క  ధశాంశ రూపం ఒక  అంతంకాని  దశాంశము  అగును.

ఉదా :-

కరణీయ సంఖ్యలు :-

•   p, q లు కరణీయ సంఖ్యలు మరయు q ≠ 0 అయిన  p /q రూపం లో రాయలేని  సంఖ్యలను కరణీయ సంఖ్యలు అంటారు .

• ప్రతీ కరణీయ సంఖ్య ధశాంశ రూపం ఒక అంతంకాని  దశాంశము  అగును.

ప్రవచనం: p అనేది ఒక ప్రధాన సంఖ్య మరియు a ఒక ధనపూర్ణ సంఖ్య అయితే “ a2 ను p  నిశ్శేషంగా భాగిస్తే a ను p  నిశ్శేషంగాభాగిస్తుంది.

ఘాతాలు :

• a n  ను ఘాతాంక రూపం అంటాము. a ను భూమి అని ,  n  ను ఘాతము అని  అంటారు.

(i)    \dpi{100} \large a^{m }\, \times a^{n} = a^{m + n}      (ii)       \dpi{100} \large \frac{a^{m}}{a^{n}} = a^{m - n}    (iii)    ( am)n = amn    (iv)   a0 = 1               

సంవర్గమానాలు:-

x మరియు aలు ధనపూర్ణసంఖ్యలై a ≠1 అయివుండి ax = n అయిన x = {{log_{a}}^{N}} అగును. 

సంవర్గమాన న్యాయాలు

 

2. సమితులు 

• గణిత పరిశోధనలలో సమితి వాదాన్ని ‘ జార్జి కాంటర్’  అభివృద్ధి పరిచారు.

సమితి: సునిర్విచిత వస్తువుల సముదాయాన్ని సమితి అంటారు.

• సునిర్విచితం అనగా :

1 . సమితిలోని వస్తువులన్నిటికి  ఒకే విధమైన సామాన్య పోలిక లేదా ధర్మం కలిగి ఉండాలి .

2 . ఏదైనా ఓకే  సమితికి చెందినది, లేనిది నిర్దారించే టట్లు ఉండాలి.

•  సమితి పేరును ఇంగ్లీష్ వర్ణమాల లోని పెద్ద అక్షరాలతో సూచిస్తారు. ఉదాహరణకు  A, B, … మొదలగునవి.

• ఏదైనా ఓకే వస్తువు ఒక సమితికి చెందితే దాన్ని వస్తువులు/ మూలకాలు అంటారు . చెందినది (belongs to) అని తెలపటానికి మనం  ∈ గుర్తు తో సూచిస్తాము.సమితికి చెందినది అయితే దానిని ∉ చే సూచిస్తాము.

• జాబితా రూపం లేదా రోస్టర్ రూపం : సమితికి చెందిన మూలకాలన్నిటిని ‘కామ’ (,) తో వేరు చేసి ప్లవర్  బ్రాకెట్  { } లో ఉంచితే వచ్చే రూపాన్ని  జాబితా రూపం లేదా రోస్టర్ రూపం అంటారు.

ఉదా :- A = {1, 2, 3, 4},   B = { a, e, I, o, u}.

• సమితి నిర్మాణ రూపం లేదా లాక్షణిక  రూపం : సమితి లోని మూలకాన్ని  x ( లేక yz  మొదలగు ఏవైన గుర్తులు ) గా సూచించి , x  ప్రక్కన   : లేదా / (colon ) ఉంచి ఆ  సమితి కి చెందిన మూలకాల యొక్క లక్షణాలు లేదా ధర్మాలను రాసి ప్లవర్  బ్రాకెట్  { } ఉంచితే వచ్చే రూపాన్ని  సమితి నిర్మాణ రూపం లేదా లాక్షణిక రూపం అంటారు . : లేదా / గుర్తులను such that  అని చదువుతాము .

ఉదా :- A = { x/  x  ఒక  సరి సంఖ్య  మరియి xN }, B = { y : y  ఒక  ప్రధాన సంఖ్య మరియు x < 10 }.

సమితులు  –  రకాలు

శూన్య  సమితి : ఎలాంటి మూలకాలు  లేని సమితిని శూన్య సమితి అంటారు. దీనిని { }  లేదా  ∅ చే సూచిస్తాము.

ఉదా:-  =  { x / x ఒక సహజ సంఖ్య మరియు 2 < x < 3 }.

పరిమిత  సమితి :  ఒక  సమితిలోని మూలకాలను లెక్కించుటకు వీలైనచో  ఆ సమితిని పరిమిత సమితి అంటారు.

ఉదా :- A  = { ఒక పాటశాలలోని  విద్యార్థులు }, B  = { 1, 2, 3, 4 }.

పరిమిత  సమితి :  ఒక  సమితిలోని మూలకాలను లెక్కించుటకు వీలు కానిచో   ఆ సమితిని అ పరిమిత సమితి అంటారు.

ఉదా :- A  = { ఒక సరళ రేఖ పై ఉన్న బిందువులు  }, B  = { 1, 2, 3, 4,…….. }.

కార్డినల్ సంఖ్య : ఒక సమితి లోని మూలకాల సంఖ్యను తెలిపే దానిని ఆ సమితికి ‘కార్డినల్ సంఖ్య ‘ అంటారు. సమితి A యొక్క కార్డినల్ సంఖ్యను n(A ) చే సూచిస్తారు.

ఉదా :A = { 1, 2 , 3, 4 } ⟹ n(A ) = 4

గమనిక :- శూన్య సమితిలో మూలకాలు ఉండవు కావున n (∅) = 0

ఉప సమితి: A , B  లు  రెండు సమితులు, సమితి A  లోని ప్రతీ మూలకం సమితి B  లో  ఉంటే A ని B  యొక్క ఉపసమితి అంటారు .దీనిని A  ⊂ B  అని రాస్తాము.

ఉదా :A = { 1, 2 , 3, 4 } , B  = { 1, 2, 3, 4, 5, 6}  ⟹ A  ⊂ B

గమనిక :

1) శూన్య సమితి ప్రతి సమితికి ఉప సమితి అవుతుంది.

2) ప్రతి సమితి దానికదే  ఉప సమితి అవుతుంది.

విశ్వ సమితి :  మన పరిశీలనలో ఉండి, అన్ని ఉప సమితులను కలిగి ఉన్న సమితిని విశ్వ సమితి అంటారు. దీనిని U  లేదా 𝜇 చే సూచిస్తాము.

సాధారణంగా విశ్వ సమితిని దీర్ఘచతురస్రం లో ‘ 𝜇’ తో సూచిస్తాము

ఉదా : 1) మన దేశం లో వివిధ రకా లై న ప్రజా సమూహాలను అధ్యయనం చేయాలంటే భారత దేశంలో నివసిస్తున్న ప్రజలందరూ  విశ్వ సమితి  అవుతారు.

2)  ఒక పాఠశాల లోని విద్యార్థులను అధ్యయనం చేయాలంటే , ఆ పాఠశాల లోని విద్యార్థులు అందరూ విశ్వ సమితి అవుతారు.

సమ సమితులు : రెండు సమితులు A  మరియు B  లు సమానం కావాలంటే A  లోని ప్రతీ మూలకం B  లో ఉండాలి. అలాగే B  లోని ప్రతీ మూలకం A  లో ఉండాలి. A మరియు B లు సమ సమితులు అయితే A = B అని రాస్తాము.

ఉదా :- A = {1, 2 ,3, 4 },  B = {3, 2, 1, 4 }  ⟹ A = B

గమనిక : 

1) A  ⊂ B  మరియు B A  అయితే  A = B అని రాస్తాము.

 2) A  ⊂ B ,  B A  ⇔  A = B అని కూడ రాయవచ్చు . ఈ  ⇔ గుర్తు రెండు వైపులా వర్తిస్తుంది, దీనిని  if and only if (‘iff’)  అని చదువుతాము.

తుల్య  సమితులు : రెండు సమితుల లోని మూలకాల సంఖ్య సమానంగా ఉంటే  ఆ సమితులను తుల్య సమితులు అంటారు.

ఉదా :- A = {1, 2 ,3, 4 },  B = {a ,e, I, o  }

n (A) = 3        n (B ) = 3

 A ~  B

వెన్ చిత్రాలు :

సమితుల మద్య సంబందాలను  సూచించడానికి వెన్ లేదా ఆయిలర్ చిత్రాలను ఉపయోగిస్తాము. ఈ చిత్రాలలో దీర్ఘచతురస్రాలు, సంవృత  వక్రాలు సాధారణంగా వృత్తాలు ఉంటాయి.

ఉదాహరణలు:-

→ μ = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }, A = { 1, 3, 5 } B = ( 1,2, 3, 4,5, 6 }

venn diagram 1

→ μ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, A = {1, 3, 5}   B = (2, 4, 6}

venn diagram 2

సమితులలో  ప్రక్రియలు:

సమితుల సమ్మేళనం :-  A  సమితిలో గాని B సమితిలో గాని లేదా రెండింటి లో గాని ఉన్న మూలకాలన్నింటినీ కలిగి ఉన్న సమితిని A ,B ల సమ్మేళన సమితి అంటారు. దీనిని A∪ B చే సూచిస్తాము .

      A∪ B = {x: x ∈A లేదా x ∈B}

union of sets

ఉదా :-  A = {1, 2, 3}, B = {3, 4, 5}

A ∪ B = {1, 2, 3} ∪ {3, 4, 5}

A ∪ B = {1, 2, 3, 4, 5}

సమితుల ఛేదనం:  సమితి A  కి  మరియు సమితి B కి  చెందిన ఉమ్మడి మూలకాలు అలిగి ఉన్న సమితిని A ,B ల ఛేదన సమితి అం టాము.

     లాక్షణిక రూపం:        A∩ B = {x: x ∈A మరియు  x ∈B}

intersection of sets

ఉదా :-

A = {1, 2, 3}, B = {3, 4, 5}        

A ∩ B = {1, 2, 3} ∩ {3, 4, 5}

A ∩ B = {3}

వి యుక్త సమితులు:   ఉమ్మడి మూలకాలు లేని సమితులను వి యుక్త సమితులు అని అంటారు.

  • A, B లు వి యుక్త సమితులైన A ∩ B = ∅ అవుతుంది.

సమితుల భేదం : A , B లు రెండు సమితి లై, A లో ఉంటూ B లో లేని మూలకాల సమితిని A , B సమితుల భేదం అంటారు.

   A− B = {x: x ∈A మరియు x ∉ B},    B− A = {x: x  ∈ B మరియు  x ∉ A }

difference of sets

 

 

3.బహుపదులు 

బహు పది: చర స్థిర రాశుల తో నిర్మితమైన బీజీయ సమాసాలే  బహుదులు. చర రాశులను కొన్ని స్థిర రాశులతో  గుణించగా వచ్చు గుణకాలు మరియు వీటిని రునేతర ధన పూర్ణ సంఖ్యల ఘాతాలకు హెచ్చించి వివిధ పరిమాణాలకు రాయబడే బీజీయ సమాసాలను బహుపదులు అంటారు.

ఉదా : 3x + 5 , 4x2 – 3x + 5, x4 మొ ∥నవి  బహుపదులు.

TS X maths బహుపదులు 1మొ ∥నవి  బహుపదులు కావు.

బహు పది పరిమాణం : x  చర రాశిలో గల బహు పది p (x ) లో x యొక్క గరిష్ఠ ఘాతాంకం p(x) బహుపది యొక్క   పరిమాణం అంటారు.

రేఖీయ బహుపది : ఒక బహుపది యొక్క పరిమాణం 1 అయితే  ఆ బహు పదిని  రేఖీయ బహుపది అంటారు.

సాధారణ రూపం : ax + b

ఉదా : 3x – 5, m + 2, p మొ ∥నవి రేఖీయ బహుపదులు.

 వర్గ  బహుపది : ఒక బహుపది యొక్క పరిమాణం 2  అయితే  ఆ బహు పదిని  వర్గ  బహుపది అంటారు.

సాధారణ రూపం : ax2 + bx + c

ఆ బహు పదిని  రేఖీయ బహుపది అంటారు.

ఉదా : x2 – 3x + 5, 4x2 + 5, మొ ∥నవి వర్గ  బహుపదులు.

త్రి పరిమాణ  బహుపది : ఒక బహుపది యొక్క పరిమాణం 3  అయితే  ఆ బహు పదిని  త్రి పరిమాణ బహుపది అంటారు.

సాధారణ రూపం : ax3 + bx2 + cx + d

ఆ బహు పదిని  రేఖీయ బహుపది అంటారు.

ఉదా : 3x3 – 5x,+ 4,  m3 + 2m2 +4m, మొ ∥నవి  త్రి పరిమాణ బహుపదులు.

nవ పరిమాణ బహుపది:

p(x) = a0 xn + a1 xn – 1 + a2 xn – 2 + … + an – 1 x + an ను nవ పరిమాణ బహుపది అం టాము.

బహుపది యొక్క విలువ:

ఒక వాస్తవ సంఖ్య ‘k’ ను, చాల రాశి ‘x’ కు బదులుగా ప్రతిక్షేపిస్తే p(k) అవుతుంది. దీనిని  p(x)అనే బహుపది కి k వద్ద వచ్చు విలువ అంటాము.

ఉదా : p(x) = x2 – 2x + 1

        x= 1 ⟹ p (1) = (1)2 – 2 (1) + 1

                                  = 1 – 2 + 1

                                  = 0

      x= 1 వద్ద   p(x) విలువ 0.

                    x = 2 ⟹ p (2) = (2)2 – 2 (2) + 1

                                         = 4 – 4 + 1

                                             = 1

                x=2 వద్ద   p(x) విలువ 1.

 బహుపది యొక్క  శూన్యాలు :

ఒక వాస్తవ సంఖ్య ‘k’ అనేది బహుపది  p(x)  కు శూన్యం కావాలంటే  p(k) = 0 కావాలి .

ఉదా : p(x) = x2 – 2x + 1

        x= 1 ⟹ p (1) = (1)2 – 2 (1) + 1

                                  = 1 – 2 + 1

                                  = 0

      x= 1 అనేది    p(x) కి శూన్య విలువ అవుతుంది.

p(x) = x + 1

                    x = – 1⟹p (– 1) = – 1 + 1

                                                 = 0

                 x = – 1 అనేది p(x) కి శూన్య విలువ అవుతుంది.

రేఖీయ బహు పది యొక్క రేఖా చిత్రం :.

y = x + 2

TS X maths బహుపదులు 6


TS X maths బహుపదులు 2

వర్గ  బహు పది యొక్క రేఖా చిత్రం :

y = x2 + x – 6

TS X maths బహుపదులు 5

TS X maths బహుపదులు 3

సందర్భం-1 :TS X maths బహుపదులు 7

ఈ సందర్భం లో రేఖా  చిత్రం x – అక్షం ను రెండు వేర్వేరు బిందువుల వద్ద ఖండించింది. ఆ బిందువుల x నిరూపకాలు వర్గ బహుపది ax2 + bx + c కి శూన్యాలు అవుతాయి. పరావలయం  పై వైపునకు గాని, క్రింది వైపునకు గాని విస్తరించబడి ఉంటుంది.

సందర్భం-2  :

TS X maths బహుపదులు 8

ఈ సందర్భం లో రేఖా  చిత్రం x – అక్షం ను  ఒకే  బిందువు

వద్ద ఖండించింది. ఆ బిందువు x నిరూపకం  వర్గ బహుపది ax2 + bx + c కి శూన్యం అవుతుంది. పరావలయం  పై వైపునకు గాని, క్రింది వైపునకు గాని విస్తరించబడి ఉంటుంది.

సందర్భం-3   :TS X maths బహుపదులు 9

ఈ సందర్భం లో రేఖా  చిత్రం x – అక్షం ను  ఏ బిందువు వద్ద ఖండించదు . వర్గ బహుపది ax2 + bx + c కి శూన్యాలు ఉండవు. పరావలయం  పై వైపునకు గాని, క్రింది వైపునకు గాని విస్తరించబడి ఉంటుంది


ఘన బహు పది యొక్క రేఖా చిత్రం :

y = x3 – x2

TS X maths బహుపదులు 7

TS X maths బహుపదులు 4

 ఒక బహుపది గుణకాలకు, శూన్యాలకు మధ్య సంబంధం:

1.రేఖీయ బహుపది :

p(x)= ax + b

p(x) శూన్యం కావాలంటే ax + b = 0 కావాలి

 ⟹ax =– b

        x = – b/a

2.వర్గ బహుపది :

 p(x)= ax2 + bx + c

α, β లు p(x)కు శూన్యాలు అనుకొను ము.

p(x) = k (x – α) (x – β), k ఒక స్థిరాంకం.

         = k [x2 – (α + β) x + αβ]

         ax2 + bx + c = k x2 – k (α + β) x + k αβ

                      a = k, b = – k (α + β) మరియు c = k αβ

            శూన్యాల మొత్తం = (α + β) =TS X maths బహుపదులు 10=TS X maths బహుపదులు 12

              శూన్యాల  లబ్దం  =αβ =TS X maths బహుపదులు 11=TS X maths బహుపదులు 13

3.ఘన బహుపది : ఒక బహుపది యొక్క పరిమాణం 1 అయితే ఆ బహు పదిని  రేఖీయ బహుపది అంటారు.

p(x)= ax3 + bx2 + cx + d

α, β మరియు γ లు p(x) కు శూన్యాలు అనుకొను ము.

p(x) = k (x – α) (x – β) (x – γ), k ఒక స్థిరాంకం

         = k [x2 – (α + β) x + αβ] (x – γ)

         ax2 + bx + c = k x2 – K (α + β + γ) x2+k (αβ + β γ +γα) x − k αβγ

           a = k, b = – k (α + β + γ), c = k (αβ + β γ +γα) మరియు d= – k αβγ

          (α + β + γ) =TS X maths బహుపదులు 10= TS X maths బహుపదులు 16; αβ + β γ +γα =TS X maths బహుపదులు 14  మరియు αβ γ=TS X maths బహుపదులు 15

బహుపదుల  భాగహార నియమం :

P(x) మరియు g(x) అనేవి రెండు బహుపదులు, g(x)≠0 అయినపుడు రెండు బహుపదులు   q(x)మరియు r(x) లను పొందాలంటే P(x) = g(x) ×   q(x) + r(x)

r(x) = 0 లేదా r(x) పరిమాణం < g(x) యొక్క పరిమాణం   

   గమనిక :

  • q(x) అనేది ఒక రేఖీయ బహుపది అయిన r(x) = r ఓక స్థిరాంకం.
  • q(x) యొక్క పరిమాణం 1 అయిన P(x) యొక్క పరిమాణం = 1 + g(x) యొక్క పరిమాణం అగును.
  • P(x) ను (x – a) చే భాగిస్తే వచ్చే శేషం P (a) అగును.
  • r= 0 అయితే P(x) ను q(x) ఖచ్చితంగా భాగిస్తుంది లేదా q(x) అనేది P(x) యొక్క కారణాంకం అవుతుంది.

 

 

4  రెండు చర రాశులలో రేఖీయ సమీకరణాల జత 

రేఖీయ సమీకరణం:

 a , b ,c లు వాస్తవ సంఖ్యలై a లేదా b సున్నా కానట్టి సమీకరణం  a x + b y + c = 0 (a2 + b2 ≠0) ను x , y లలో రేఖీయ సమీకరణం అంటారు.

రేఖీయ సమీకరణాల జత :

ఒకే రకమైన రెండు చర రాశులు గల రెండు రేఖీయ సమీకరణాలను రెండు చర రాశులలో రేఖీయ సమీకరణాల జత అంటారు.

a1x + b1y + c1 = 0 (a12 + b12≠0), a2x + b2 y + c2 = 0 (a22 + b22≠0); a1, a2, b1, b2, c1, c2 లు వాస్తవ సంఖ్యలు.

రెండు చర రాశులలో రేఖీయ సమీకరణాల జతకు సాధనలు :

ఒక తలం లో రెండు సరళ రేఖలు గీసినపుడు . ఈ క్రింది మూడు సందర్భాలలో ఒక్కటి మాత్రమే  సాధ్యమగు ను.

  1. ఆ రెండు సరళ రేఖలు ఒక బిందువు వద్ద ఖండించు కోనును.TS X maths రెండు చర రాశులలో సమీకరణాల జత 1
  2. ఆ రెండు సరళ రేఖలు ఖండించుకోవు . అవి సమాంతర రేఖలు.TS X maths రెండు చర రాశులలో సమీకరణాల జత 2
  3. ఆ రెండు రేఖలు ఏకీభవించును.TS X maths రెండు చర రాశులలో సమీకరణాల జత 3

  గ్రాఫ్ పద్ధతి ద్వారా రేఖీయ సమీకరణాల జతకు సాధనలు కనుగొనుట:

1.2x + y −5 = 0, 3x – 2y − 4 = 0

TS X maths రెండు చర రాశులలో సమీకరణాల జత 4

TS X maths రెండు చర రాశులలో సమీకరణాల జత 5

పై పట్టికలలోని బిందువులను కార్టీ జియన్  తలంలో గుర్తించ గా ఏర్పడిన గ్రాఫ్ ను పరిశీలించగా , రెండు రేఖల ఖండన బిందువు (2, 1).

(2, 1) బిందువు  ఇచ్చిన రేఖలకు ఏకైక ఉమ్మడి బిందువు అందువలన రెండు చర రాశులలో రేఖీయ సమీకరణాల జతకు ఒకే ఒక సాధన ఉంటుంది. ఇటువంటి సమీకరణాలను ‘సంగత’ రేఖీయ సమీకరణాల జత అంటారు.

2.2x – 3y = 5; 4x – 6y = 15

ssc linear equations in two variable 1      ssc linear equations in two variable 2

TS X maths రెండు చర రాశులలో సమీకరణాల జత 6

పై పట్టికలలోని బిందువులను కార్టీ జియన్  తలంలో గుర్తించ గా ఏర్పడిన గ్రాఫ్ ను పరిశీలించగా , రెండు రేఖలు ఖండించుకోలేదు.

 ఇచ్చిన రేఖలకు ఏకైక ఉమ్మడి బిందువు లేదు. ఇటువంటి సమీకరణాలను ‘అ సంగత’ రేఖీయ సమీకరణాల జత అంటారు.

3. 3x + 4y = 2; 6x + 8y = 4

TS X maths రెండు చర రాశులలో సమీకరణాల జత 8

TS X maths రెండు చర రాశులలో సమీకరణాల జత 9

పై పట్టికలలోని బిందువులను కార్టీ జియన్  తలంలో గుర్తించ గా ఏర్పడిన గ్రాఫ్ ను పరిశీలించగా , రెండు రేఖలు ఏకీభవించాయి .

 రేఖ పై  ఏర్పడిన  ప్రతీ  బిందువు రెండు సమీకరణాలకు ఉమ్మడి సాధనలు. ఈ  సమీకరణాలు తుల్యాలు , వీటికి అనంత సాధనలు ఉంటాయి .

గుణకములు మరియు సమీకరణ వ్యవస్థ స్వభావం మధ్య గల సంబంధం:

TS X maths రెండు చర రాశులలో సమీకరణాల జత 10

రేఖీయ  సమీకరణాల జతకు సాధన కనుగొనడానికి బీజ గణిత పద్దతులు:

a1x + b1y + c1 = 0 (a12 + b12≠0), a2x + b2 y + c2 = 0 (a22 + b22≠0) లు సమీకరణాల జత

ప్రతిక్షేపణ  పద్ధతి : –

రెండు చర రాశులలో  రేఖీయ సమీకరణాల జతకు సాధన కనుగొనుట లో ఒక చర రాశిని, రెండవ చర రాశిని పదాలలో రాసినప్పుడు ఈ పద్ధతి చాలా ఉపయోగం.

ప్రతిక్షేపణ  పద్ధతి సోపానాలు  :

సోపానం -1 :  ఒక సమీకరణం లో ఒక చర రాశిని వేరొక చర రాశి పదాలలో రాయాలి. చర రాశి ‘y’ ని చర రాశి ‘x’ పదముల లొ లేదా  చర రాశి ‘x’ ని చర రాశి  ‘y’ పదాలలో రాయాలి.

సోపానం -2  : సోపానం 1 లో  వచ్చిన చర రాశి y ( లేదా x) విలువను రెండవ సమీకరణం లో ప్రతిక్షేపించాలి.

సోపానం -3 : సోపానం 2  లో  వచ్చిన సమీకరణాన్ని సూక్ష్మీకరించి x ( లేదా y) విలువను కనుగొనాలి.

సోపానం -4  : సోపానం 3   లో  వచ్చిన  x ( లేదా y) విలువను ఇచ్చిన ఎదో ఒక  సమీకరణం  ప్రతిక్షేపిస్తే  y ( లేదా x) వస్తుంది.

సోపానం -5  :  వచ్చిన  x ,  y విలువను ఇచ్చిన  సమీకరణా లలో ప్రతిక్షేపించి సరి చూడాలి.

ఉదా : x + y = 3 , x – y = 1 లను ప్రతిక్షేపణ  పద్ధతిలో సాధించుము.

సాధన:

  x + y = 3 ……… (1)

  x – y = 1 ……… (2)

    (1) నుండి   y = 3 – x

y = 3 – x ను సమీకరణం (2) లో ప్రతిక్షేపించగా  

  x – (3 – x) = 1

  x – 3 + x = 1 ⇒2x = 4 ⇒x = 2 వస్తుంది

 x = 2 ను సమీకరణం (1) లో ప్రతిక్షేపించగా  

2 + y = 3 ⇒y = 3 – 2 ⇒y = 1 వస్తుంది.

x, y విలువలను సమీకరణం (2) లో ప్రతిక్షేపించి సరి చూడాలి

x – y = 1⇒ 2 –1= 1

⇒ 1= 1

∴ ఇచ్చిన సమీకరణాల జతకు సాధన x = 2, y = 1.

చర రాశిని  తొలగించు  పద్ధతి : –

సమీకరణాలలోని ఒక చర రాశి  గుణకాలను  సమానం చేయడం ద్వారా ఆ చర రాశిని తొలగిస్తాము. దీని వలన ఒక చర రాశిలో ఒకే సమీకరణం ఏర్పడుతుంది. దీనిని సాధించడం వలన రెండవ చర రాశి వస్తుంది.

చర రాశి తొలగించు  పద్ధతి సోపానాలు  :

సోపానం -1 :   ఇచ్చిన రెండు సమీకరణాలను  ax + by = c రూపం లోకి మార్చాలి.

సోపానం -2  :  ఆ  రెండు సమీకరణాలను  సరైన వాస్తవ సంఖ్యలతో గుణించి , ఆ రెండు సమీకరణాలలోని రెండు చర రాశులలో తొలగించ దలచిన ఒక చర రాశి గుణకాన్ని సమానం చేయాలి.

సోపానం -3 :  తొలగించ వలసిన చర రాశి  గుణకాలు రెండు సమీకరణాలలో   ఒకే గుర్తును కలిగివుంటే ఒక సమీకరణం నుండి వేరొక సమీకరణం ను తీసివేస్తే ఒక చర రాశిలో ఒక  సమీకరణం వస్తుంది. వాటికి వ్యతిరేక గుర్తులు ఉంటే  కూడాలి.   

సోపానం -4  :  మిగిలిన చర రాశి కొరకు ఆ సమీకరణాన్ని సాధించాలి.

సోపానం -5  :   వచ్చిన విలువను ఇచ్చిన రెండు సమీకరణాలలో ఒకదానిలో ప్రతిక్షేపించి , ముందు తొలగించిన చర రాశి విలువను కనుక్కోవాలి .

ఉదా : 2x – y = 5 , 3x + 2 y = 11 లను చర రాశి తొలగించు  పద్ధతిలో సాధించుము.

సాధన :

 2x – y = 5 ……. (1)

3x + 2 y = 11……. (2)

TS X maths రెండు చర రాశులలో సమీకరణాల జత 11

⇒ x = 3 

x = 3 విలువను సమీకరణం (1) లో ప్రతిక్షేపించగా

2x – y = 5 ⇒ 2(3) – y = 5 ⇒ 6 – y = 5

6 -5 = y ⇒ y = 1.

కావలసిన సాధన x = 3, y = 1.

 

 

5. వర్గ సమీకరణం 

వర్గ  సమీకరణం: a, b, c లు వాస్తవ సంఖ్య లై a ≠0 అయిన ax2 + bx + c = 0 ను ‘x’ లో వర్గ సమీకరణం అంటాము. p(x) ఒక ద్వి పరిమాణ బహుపది అవుతూ p(x) = 0 రూపం లో వున్న వాటన్నిటి ని వర్గ సమీకరణాలు అంటారు.

ax2 + bx + c = 0, a ≠0 నకు aα2 + bα+ c = 0 అయిన α ను వర్గ సమీకరణం యొక్క మూలం అంటారు.

ax2 + bx + c వర్గ బహుపది యొక్క శూన్య విలువలు, ax2 + bx + c = 0 వర్గ సమీకరణ మూలాలు ఒక్కటే.

వర్గ సమీకరణ సాధన పద్దతులు:

1.కారణాంక పద్ధతి:

ax2 + bx + c = 0, a ≠0 ఇచ్చిన వర్గ సమీకరణం

కారణాంక పద్ధతి న వర్గ సమీకరణ సాధనకు సోపానాలు :

సోపానం -1: మధ్య పదమును రెండు  పదాలుగా విడగొట్టాలి.

సోపానం -2 : మధ్య పదమును రెండు  పదాలుగా విడగొట్టుటకు p + q = b మరియు p ×q= a × c.అయ్యే విధంగాp, q లను కనుగొనాలి.

సోపానం -3 : p, q లను కనుగొనుటకు a × c విలువ యొక్క కారణాంకాల జాబితాను తయారు చేయాలి.

సోపానం -4 :  p + q = b మరియు p ×q= a × c లను తృప్తి పరిచే జతను ఎన్నుకొని ఇచ్చిన సమీకరణాన్ని  కారణాంకాల లబ్దంగా రాసి సమీకరణ మూలాలను కనుక్కోవాలి.

ఉదా : కారణాంక పద్ధతిన   2x2 + 5x + 3 = 0 యొక్క మూలాలను కనుగొనుము

సాధన : ఇచ్చిన సమీకరణం  2x2 + 5x + 3 = 0

         p + q = 5; p ×q= 6

          6 యొక్క కారణాంకాల జాబితా: (1, 6), (-1, -6), (2, 3), (-2, -3)

          (2, 3) అనే జత p + q = 5; p ×q= 6 లను తృప్తి పరుస్తుంది

      ⇒ 2x2 + 5x + 3 = 0 ను 2x2 +(2 + 3)x + 3 = 0 గా రాయవచ్చు

      ⇒2x2 +2x + 3x + 3 = 0 ⇒ 2x ( x + 1) + 3 (x +1) = 0

         ⇒ (x + 1) (2x + 3) = 0 ⇒ (x+1) = 0 లేదా  (2x + 3)= 0

          ∴ x = -1, -3/2 లు సాధనలు.

2.వర్గమును పూర్తి చేయుట ద్వారా వర్గ సమీకరణ సాధన:

ax2 + bx + c = 0, a ≠0 ఇచ్చిన వర్గ సమీకరణం

వర్గమును పూర్తి చేయుట ద్వారా  వర్గ సమీకరణ సాధనకు సోపానాలు :

సోపానం -1: ఇచ్చిన సమీకరణం లోని స్థిర పదమును కుడి వైపుకు తీసుకువెళ్లి  ఇరువైపుల a చే భాగించాలి.  

సోపానం -2 : ఎడమ భాగమును సంపూర్ణ వర్గముగా మార్చుటకు సమీకరణముకు ఇరువైపుల TS X maths వర్గ సమీకరణం 1  ను కూడాలి.

సోపానం -3 : ఎడమ భాగాన్ని వర్గం చేసి కుడి భాగాన్ని సూక్ష్మీకరించాలి.

సోపానం -4 :   సోపానం-3 ను సాధిస్తే ఇచ్చిన సమీకరణానికి మూలాలు వస్తాయి.

ఉదా : వర్గమును పూర్తి చేయుట ద్వారా  2x2 + 5x + 3 = 0 యొక్క మూలాలను కనుగొనుము

సాధన : ఇచ్చిన సమీకరణం  2x2 + 5x + 3 = 0

TS X maths వర్గ సమీకరణం 6

 3.సూత్రం ద్వారా  వర్గ సమీకరణ సాధన:

ax2 + bx + c = 0, a ≠0 వర్గ సమీకరణం కు మూలాలు  

ఉదా : సూత్రం ద్వారా  2x2 + 5x + 3 = 0 యొక్క మూలాలను కనుగొనుము

సాధన : ఇచ్చిన సమీకరణం  2x2 + 5x + 3 = 0

            TS X maths వర్గ సమీకరణం 9

మూలాల స్వభావం:

విచక్షిణి:  b2 – 4ac  అనేది ax2 + bx + c = 0, a ≠0 వర్గ సమీకరణం కు విచక్షిణి.

  1. b2 – 4ac >0 అయిన మూలాలు విభిన్న వాస్తవ సంఖ్యలు.
  2. b2 – 4ac =0 అయిన మూలాలు సమాన వాస్తవ సంఖ్యలు.
  3. b2 – 4ac < 0 అయిన మూలాలు లేవు.

 

 

6 . శ్రేఢులు

శ్రేఢి: ఒక ప్రత్యేక సూత్రం ను అనుసరించి ప్రతీ పదము దాని పూర్వ పదముతో సంబంధం కలుగునట్లు రాయగల సంఖ్యల వరుసను శ్రేఢి అంటారు.

ఉదా: 1, 3,5,7,9,…

        2,4,6,8,10,… 

శ్రేఢులు రకాలు:

శ్రేఢులు మూడు రకాలు : అవి:

  1. అంక శ్రేఢి (Arithmetic progression)
  2. గుణ శ్రేఢి(Geometric progression)
  3. హరాత్మక శ్రేఢి(Hormonic progression) [10 వ తరగతి సిలబస్ లో లేదు]

1.అంక శ్రేఢి (Arithmetic progression): –

ఒక సంఖ్యల జాబితాలో మొదటి పదం తప్ప మిగిలిన అన్ని పదాలు వాటి ముందున్న పదానికి స్థిర సంఖ్యను కలపడం వల్ల వచ్చే ఆ జాబితాను అంక శ్రేఢి అంటాము.

స్థిర పదమును ‘సామాన్య భేదం’ లేదా ‘పధాంతరం’ అంటారు. ఇది ఋణాత్మకం లేదా ధనాత్మకం లేదా సున్నా కావచ్చు.

అంక శ్రేఢి యొక్క సాధారణ రూపం:

a, a + d, a + 2d, ……., a + (n – 1) d ను అంక శ్రేఢి యొక్క సాధారణ రూపం అంటారు.

మొదటి పదం = a

సామాన్య భేదం (d) = a2 – a1= a3 – a2=….= an – an-1

n వ పదం a n =a + (n – 1) d

n పదాల మొత్తం 

             TS X maths శ్రేఢులు 1                                   

a , b, c అంక శ్రేఢి లో ఉంటే b ని a, c మధ్య అంక మధ్యమం అంటారు. 2b = a + c. 

2.గుణ శ్రేఢి(Geometric progression):-

ఒక సంఖ్యల జాబితాలో మొదటి పదం తప్ప మిగిలిన అన్ని పదాలు వాటి ముందున్న పదానికి స్థిర సంఖ్యను గుణించడం వల్ల వచ్చే ఆ జాబితాను గుణ  శ్రేఢి అంటాము.

స్థిర పదమును ‘సామాన్య నిష్పత్తి ’ అంటారు. ఇది ఋణాత్మకం లేదా ధనాత్మకం కావచ్చు.

గుణ శ్రేఢి యొక్క సాధారణ రూపం:

a, ar, a r2, ……., arn-1 ను గుణ శ్రేఢి యొక్క సాధారణ రూపం అంటారు.

మొదటి పదం = a

సామాన్య నిష్పత్తి (r) TS X maths శ్రేఢులు 2

n వ పదం an =arn-1

n పదాల మొత్తం =

TS X maths శ్రేఢులు 3                                

a , b, c గుణ శ్రేఢి లో ఉంటే b ని a, c మధ్య గుణ  మధ్యమం అంటారు. b 2 = a c.

3.హరాత్మక శ్రేఢి(Hormonic progression):-

ఒక శ్రేఢి లోని పదముల విలోమములు అంక శ్రేఢి లో ఉంటే ఆ శ్రేఢి ని హరాత్మక శ్రేఢి.

హరాత్మక శ్రేఢి యొక్క సాధారణ రూపం:

  TS X maths శ్రేఢులు 4 ను హరాత్మక శ్రేఢి యొక్క సాధారణ రూపం అంటారు.

 n వ పదం

7  . నిరూపక రేఖా గణితం

రేఖా గణిత, బీజ గణిత అనుసంధానం తో ఏర్పడినదే నిరూపక రేఖా గణితం. దీనినే  వైశ్లేషిక రేఖా గణితం లేదా కార్టీసియన్ రేఖా గణితం అంటారు.  

నిరూపక రేఖా గణితానికి మూల పురుషుడు రెనే డెకార్టె .

రెండు బిందువుల మధ్య దూరం:

  1. X – అక్షం పై ఉన్న బిందువులు A (x1, 0), B (x2, 0) అయిన వాటి మధ్య దూరం   TS X maths నిరూపక రేఖా గణితం 1 
  2. Y – అక్షం పై ఉన్న బిందువులు A (0, y1), B (0, y2) అయిన వాటి మధ్య దూరంTS X maths నిరూపక రేఖా గణితం 2  
  3. X – అక్షానికి సమాంతరంగా ఉండే రేఖపై ఉన్న బిందువులు A (x1, y1), B (x2, y­1) అయిన వాటి మధ్య దూరంTS X maths నిరూపక రేఖా గణితం 1    
  4. Y – అక్షానికి సమాంతరంగా ఉండే రేఖ పై ఉన్న బిందువులు A (x1, y1), B (x1, y2) అయిన వాటి మధ్య దూరం TS X maths నిరూపక రేఖా గణితం 2   
  5. నిరూపక తలంలో ఉండే రేఖపై ఉన్న బిందువులు A (x1, y1), B (x2, y­2) అయిన వాటి మధ్య దూరం TS X maths నిరూపక రేఖా గణితం 3 
  1. P (x, y) మరియు మూల బిందువు (0, 0) ల మధ్య దూరంTS X maths నిరూపక రేఖా గణితం 4

విభజన సూత్రం :

బిందువులు A (x1, y1) మరియు B (x2, y­2) లచే ఏర్పడు రేఖను అంతరంగా m1 : m2 నిష్పత్తి లో విభజించే బిందువు P (x, y) యొక్క నిరూపకాలు TS X maths నిరూపక రేఖా గణితం 5

బిందువులు A (x1, y1) మరియు B (x2, y­2) లచే ఏర్పడు రేఖను బాహ్యంగా m1 : m2 నిష్పత్తి లో విభజించే బిందువు P (x, y) యొక్క నిరూపకాలు TS X maths నిరూపక రేఖా గణితం 6

మధ్య బిందువు  సూత్రం :

రెండు బిందువులు A (x1, y1) మరియు B (x2, y­2) లచే ఏర్పడు రేఖా యొక్క మధ్య బిందువు TS X maths నిరూపక రేఖా గణితం 7

త్రిభుజం యొక్క గురుత్వ కేంద్రం:TS X maths నిరూపక రేఖా గణితం 8

ఒక త్రిభుజం లోని మధ్యగత రేఖల మిళిత బిందువును గురుత్వ కేంద్రం అంటారు. దీనిని G  చే సూచిస్తాము.

గురుత్వ కేంద్రం యొక్క నిరూపకాలుTS X maths నిరూపక రేఖా గణితం 9

గురుత్వ కేంద్రం మధ్యగత రేఖను 2 : 1 నిష్పత్తి లో విభజిస్తుంది. 

రేఖ యొక్క త్రిథాకరణ బిందువులు:  

ఒక రేఖాఖండమును మూడు సమాన భాగాలుగా విభజించు బిందువులను ‘త్రిథాకరణ బిందువులు’ అంటారు.

AB రేఖా ఖండము యొక్క త్రిథాకరణ బిందువులు P మరియు Q అయిన AP = PQ = QB

AB రేఖా ఖండమును P బిందువు అంతరంగ 1: 2 నిష్పత్తి లో విభజిస్తుంది.

AB రేఖా ఖండమును Q బిందువు అంతరంగ 2: 1 నిష్పత్తి లో విభజిస్తుంది.

త్రిభుజ వైశాల్యం:

A (x1, y1), B (x2, y­2) మరియు C (x3, y­3) శీర్షాలు గల త్రిభుజం యొక్క వైశాల్యం

    TS X maths నిరూపక రేఖా గణితం 10

హెరాన్   సూత్రం:

a, b, c లు భుజాల పొడవులు గల త్రిభుజ వైశాల్యం TS X maths నిరూపక రేఖా గణితం 11

బిందువుల సరేఖీయత :

ఒకే తలంలోని కొన్ని బిందువులు ఒకే రేఖా పై ఉంటే ఆ బిందువులనే సరేఖీయ బిందువులు అంటారు.

మూడు బిందువులతో ఏర్పడు త్రిభుజ వైశాల్యం సున్నా అయితే  ఆ బిందువులు సరేఖీయాలు.

సరళ రేఖ వాలు:

ఏదేని ఒక సరళ రేఖ X – అక్షం తో ధనాత్మక దిశలో θ కోణం చేస్తే tan θ ను ఆ రేఖ యొక్క వాలు అంటారు. వాలును m చే సూచిస్తాము.

                                  m = tan𝛉 

రెండు బిందువులు A (x1, y1) మరియు B (x2, y­2) లచే ఏర్పడు రేఖా యొక్క వాలుTS X maths నిరూపక రేఖా గణితం 12

 

8  . సరూప త్రిభుజాలు 

సరూప పటములు: ఒకే ఆకారం గల పటములన్నిటినీ సరూప పటములు అంటారు.

క్రమ బహుభుజి: ఒక బహుభుజి లో భుజాలన్నీ మరియు కోణాలన్నీ సమానంగా వుంటే దానిని క్రమ బహుభుజి అంటారు.

సరూప బహుభుజులు: రెండు బహుభుజులు సరూపములు కావాలంటే

  • వాటి అను రూప కోణములు సమానం కావాలి.
  • వాటి అను రూప భుజములు అనుపాతంలో ( ఒకే నిష్పత్తిలో)ఉండాలి.

సరూప త్రిభుజములు: రెండు త్రిభుజాలు సరూపములు కావాలంటే

  • వాటి అను రూప కోణములు సమానం కావాలి.
  • వాటి అను రూప భుజములు అనుపాతంలో ( ఒకే నిష్పత్తిలో)ఉండాలి.TS X maths సరూప త్రిభుజాలు 2

రెండు త్రిభుజాలు ∆ABC, ∆DEF లు సరూపాలు అయితే

  • ∠A=∠D, ∠B =∠E , ∠C =∠F
  • TS X maths సరూప త్రిభుజాలు 1

గుర్తులలో ∆ABC~ ∆DEF అని వ్రాస్తాము.  (~ సరూపపు గుర్తు)

గమనిక :

K > 1 అయిన పెద్దవి చేయబడిన పటాలు

K = 1అయిన సర్వ సమాన పటాలు

K < 1 అయిన చిన్నవి చేయబడిన పటాలు ఏర్పడుతాయి.

ప్రాథమిక అనుపాత సిద్ధాంతం (థేల్స్ సిద్ధాతం)  :TS X maths సరూప త్రిభుజాలు 3

ఒక త్రిభుజం లోని ఒక భుజానికి సమాంతరంగా గీసిన రేఖ మిగిలిన రెండు భుజాలను వేరు వేరు బిందువులలో ఖండించిన , ఆ మిగిలిన రెండు భుజాలు ఒకే నిష్పత్తిలో విభజించబడతాయి.

∆ABC లో DE ∥ BC అయినTS X maths సరూప త్రిభుజాలు 4
ప్రాథమిక అనుపాత సిద్ధాంత విపర్యయం  :

ఒక త్రిభుజం ఏవైన రెండు భుజాలను ఒకే నిష్పత్తిలో విభజించు సరళరేఖ , మూడవ భుజానికి సమాంతరంగా ఉంటుంది.

∆ABC లో  TS X maths సరూప త్రిభుజాలు 4 అయిన DE ∥ BC.

త్రిభుజాల సరూపత నియమాలు:

1.కో .కో .కో నియమం :-TS X maths సరూప త్రిభుజాలు 2

రెండు త్రిభుజాలలో అనురూప కోణాలు సమానంగా ఉంటె , వాటి అనురూప భుజాల నిష్పత్తులు సమానంగా ఉంటాయి. ఆ రెండు త్రిభుజాలు సరూప  త్రిభుజాలు అవుతాయి.

∆ABC, ∆DEF లలో   ∠A=∠D, ∠B =∠E , ∠C =∠F అయిన TS X maths సరూప త్రిభుజాలు 10

∆ABC ~ ∆DEF

2.భు.భు.భు. నియమం :-TS X maths సరూప త్రిభుజాలు 2

రెండు త్రిభుజాలలో, ఒక త్రిభుజంలోని భుజాలు వేరొక త్రిభుజంలోని భుజాలకు అనుపాతంలో వున్నా ఆ రెండు త్రిభుజాలలోని అనురూప కోణాలు సమానం . ఆ రెండు త్రిభుజాలు సరూపాలు.

∆ABC, ∆DEF లలో  TS X maths సరూప త్రిభుజాలు 10   అయిన ∠A=∠D, ∠B =∠E , ∠C =∠F

∆ABC ~ ∆DEF

3.భు.కో .భు నియమం :TS X maths సరూప త్రిభుజాలు 5

ఒక త్రిభుజంలోని ఒక కోణం , వేరొక త్రిభ్జంలోని ఒక కొనమునకు సమానమై, ఆ కోణాలు కలిగివున్న భుజాలు అనుపాతంలో వుంటే ఆ త్రిభుజాలు సరూపాలు .

∆ABC, ∆DEF లలో   ∠B =∠E మరియు TS X maths సరూప త్రిభుజాలు 6అయిన ∆ABC ~ ∆DEF 


సరూప త్రిభుజాల వైశాల్యాలు:

రెండు సరూప త్రిభుజాల వైశాల్యాల నిష్పత్తి వాటి అనురూప భుజాల నిష్పత్తి వర్గమునకు సమానం.

∆ABC, ∆PQR లలో   ∆ABC ~ ∆PQR అయిన

TS X maths సరూప త్రిభుజాలు 8

పైథాగరస్ సిద్ధాంతం (బౌధాయన సిద్ధాంతం)  :TS X maths సరూప త్రిభుజాలు 9

ఒక లంబకోణ త్రిభుజంలో కర్ణము మీది వర్గము, మిగిలిన రెండు భుజాల వర్గాల మొత్తానికి సమానం.

∆ABC లో   ∠B = 900 అయిన AC2 = AB2 + BC2

పైథాగరస్ సిద్ధాంత విపర్యయం :

ఒక  త్రిభుజంలో ఒక భుజం మీది వర్గము, మిగిలిన రెండు భుజాల వర్గాల మొత్తానికి సమానమైన, మొదటి భుజానికి ఎదురుగా వుండే కోణం లంబకోణం మరియు ఆ త్రిభుజం లంబకోణ త్రిభుజం అవుతుంది.

∆ABC లో  AC2 = AB2 + BC2  అయిన ∠B = 900

 

 

9 . వృత్తాలకు స్పర్శ రేఖలు మరియు చేధన రేఖలు   

వృత్తం :TS X maths వృత్తాలు 1

ఒక తలంలో ఓకే స్థిర బిందువు నుండి , స్థిర దూరంలో ఉన్నట్టి బిందువుల సమితిని వృత్తం అంటారు.

స్థిర బిందువును వృత్త కేంద్రమని, స్థిర దూరంను వృత్త వ్యాసార్థం అని అంటారు.

ఖండిత రేఖ లేదా చేధన రేఖ :TS X maths వృత్తాలు 2

ఒక వృత్తాన్ని రెండు బిందువుల వద్ద ఖండించే సరళ రేఖను ఖండిత రేఖ లేదా చేధన రేఖ అంటారు.

స్పర్శ రేఖ:

ఒక సరళ రేఖ, వృత్తమును ఒకే ఒక బిందువు వద్ద తాకుతూ వెళితే ఆ సరళ రేఖను స్పర్శ రేఖ  అంటారు.

స్పర్శ రేఖా అను పదం ‘టాన్ గ్రీ‘ అనే లాటిన్ పదం నుండి వచ్చింది. దీని అర్థం స్పర్శించడం. 

ఒక వృత్తానికి అనంతమైన స్పర్శ రేఖలు గీయగలము.

గమనిక :

వృత్త అంతరం లో గల ఏ బిందువు నుండైన వృత్తానికి స్పర్శ రేఖా గీయలేము.

  1. వృత్తం పై గల ఏ బిందువు నుండైన వృత్తానికి ఒకే ఒక స్పర్శ రేఖా గీయగలము
  2. వృత్త బాహ్యంలో గల ఏ బిందువు నుండైన వృత్తానికి ఖచ్చితంగా రెండు స్పర్శ రేఖలు  గీయగలము

ఒక వృత్తం  పై గల ఏదైనా బిందువు గుండా గీయబడిన స్పర్శ రేఖ, ఆ స్పర్శ బిందువు వద్ద వ్యాసార్థానికి లంబంగా ఉంటుంది.

ఒక తలంలో వృత్తం పై వ్యాసార్థం యొక్క చివరి బిందువు గుండా గీయబడిన రేఖ దానికి లంబంగా వున్నచో ఆ రేఖ వృత్తానికి స్పర్శ రేఖ అగును.

వృత్తానికి బాహ్య బిందువు నుండి గీయబడిన స్పర్శ రేఖల మధ్య ఏర్పడే కోణ     సమద్విఖండన రేఖ పై ఆ వృత్తం యొక్క కేంద్రం ఉంటుంది.
వృత్తానికి బాహ్య బిందువు గుండా గీయబడిన స్పర్శ రేఖల పొడవులు సమానం.

TS X maths వృత్తాలు 3

రెండు ఏక కేంద్ర వృత్తాలలో బాహ్య వృత్తం యొక్క జ్యా , అంతర వృత్తం యొక్క స్పర్శ బిందువు వద్ద సమద్విఖండన  అగును.

TS X maths వృత్తాలు 5


O కేంద్రముగా గల వృత్తానికి బాహ్య బిందువు A నుండి గీయబడిన స్పర్శ రేఖలు AP మరియు AQ అయిన 

TS X maths వృత్తాలు 6

    ∠PAQ = 2 ∠OPQ =2 ∠OQP

ఒక వృత్తం ABCD చతుర్భుజాన్ని P ,Q ,R, S ల వద్ద తాకిన AB + CD = BC + DA

వృత్త ఖండం యొక్క వైశాల్యం:TS X maths వృత్తాలు 8

సెక్టార్ వైశాల్యం  = TS X maths వృత్తాలు 6
APB వృత్త ఖండ వైశాల్యం = OAPB సెక్టార్ వైశాల్యం − ∆AOB వైశాల్యం

AQB వృత్త ఖండ వైశాల్యం = వృత్త వైశాల్యం − APB వృత్త ఖండ వైశాల్యం

 

 

 

10 . క్షేత్రమితి    

క్షేత్రమితి: జ్యామితి పటాల వైశాల్యాలను, ఘనపరిమాణాలను గణించే గణిత విభాగమును క్షేత్రమితి అంటారు.   
దీర్ఘఘనం :TS X maths . క్షేత్రమితి 1

దీర్ఘఘనం నకు 3 ముఖ తలాలు, 12 అంచులు,8 శీర్షాలు ఉంటాయి.

పొడవు = l; వెడల్పు = b మరియు ఎత్తు = h అయిన

ఉపరితల వైశాల్యం  = 2h (l + b )చ. ప్రమాణాలు.

సంపూర్ణ తల వైశాల్యం  = 2(lb + b h + hl )చ. ప్రమాణాలు.

ఘనపరిమాణం = lbh ఘ .ప్రమాణాలు  
సమఘనం :TS X maths . క్షేత్రమితి 2

సమఘనం నకు 3 ముఖ తలాలు, 12 అంచులు,8 శీర్షాలు ఉంటాయి.

సమఘనపు భుజం  = a అయిన

ఉపరితల వైశాల్యం  = 4a2  చ. ప్రమాణాలు.

సంపూర్ణ తల వైశాల్యం  = 6a2చ. ప్రమాణాలు.

ఘనపరిమాణం = a3 ఘ .ప్రమాణాలు

క్రమ పట్టకం :TS X maths . క్షేత్రమితి 3

ఉపరితల వైశాల్యం  = (భుపరిది× ఎత్తు)  చ. ప్రమాణాలు.

సంపూర్ణ తల వైశాల్యం  = (వక్రతల వైశాల్యం + 2× చివరి కారణాల వైశాల్యం)చ. ప్రమాణాలు.

ఘనపరిమాణం =  (భూ వైశాల్యం × ఎత్తు) ఘ .ప్రమాణాలు.    
క్రమ వృత్తాకార స్థూపం:TS X maths . క్షేత్రమితి 4

స్థూప భూ వ్యాసార్థం  = r మరియు స్థూపం ఎత్తు = h అయిన  

ఉపరితల వైశాల్యం  = 2πrh   చ. ప్రమాణాలు.

సంపూర్ణ తల వైశాల్యం  =2πr(r + h)  చ. ప్రమాణాలు.

ఘనపరిమాణం = πr2h  ఘ .ప్రమాణాలు.   TS X maths . క్షేత్రమితి 12
క్రమ వృత్తాకార శంకువు :TS X maths . క్షేత్రమితి 6

భూ  వ్యాసార్థం  = r; స్థూపం ఎత్తు = h మరియు ఏటవాలు ఎత్తు l  అయిన  

ఉపరితల వైశాల్యం  = πrl చ. ప్రమాణాలు.

సంపూర్ణ తల వైశాల్యం  =πr(r + l)  చ. ప్రమాణాలు.

ఘనపరిమాణం = TS X maths . క్షేత్రమితి 5πr2h  ఘ .ప్రమాణాలు .  TS X maths . క్షేత్రమితి 12

క్రమ పిరమిడ్:TS X maths . క్షేత్రమితి 7

ఉపరితల వైశాల్యం  = 2πrh   చ. ప్రమాణాలు.

సంపూర్ణ తల వైశాల్యం  =2πr(r + h)  చ. ప్రమాణాలు.

ఘనపరిమాణం = πr2h  ఘ .ప్రమాణాలు. TS X maths . క్షేత్రమితి 12

గోళం:TS X maths . క్షేత్రమితి 8

ఉపరితల వైశాల్యం  = 4πr2 చ. ప్రమాణాలు.

సంపూర్ణ తల వైశాల్యం  =  4πr2  చ. ప్రమాణాలు.

ఘనపరిమాణం = TS X maths . క్షేత్రమితి 9πr3  ఘ .ప్రమాణాలు.TS X maths . క్షేత్రమితి 12

 అర్థ గోళం:TS X maths . క్షేత్రమితి 11

ఉపరితల వైశాల్యం  = 2πr2 చ. ప్రమాణాలు.

సంపూర్ణ తల వైశాల్యం  =  3πr2  చ. ప్రమాణాలు.

ఘనపరిమాణం = TS X maths . క్షేత్రమితి 10πr3  ఘ .ప్రమాణాలు.TS X maths . క్షేత్రమితి 12

 

11  . త్రికోణమితి    

 

త్రిభుజం లోని మూడు కోణాల కొలతను త్రికోణమితి అంటారు. దీనిని ఆంగ్లంలో  Trigonometry అని అంటారు, ఈ పదం గ్రీక్ భాష లోని trigonon , metron అనే పదాలనుండి పుట్టింది. trigonon అంటే త్రిభుజం metron అంటే మాపనం అని అర్థం.

కోణం: ఒకే ఉమ్మడి అంత్య బిందువు కలిగిన రెండు కిరణాల సమ్మేళనాన్ని కోణం అంటారు.

సవ్య పరిభ్రమణం: గడియారంలో ముళ్ళు ఏ దిశలో తిరుగు నో , అదే దిశలో అంతిమ భుజం తిరుగుతున్నపుడు ఆ భ్రమణాన్ని  సవ్య పరిభ్రమణం అంటారు. ఈ దశలో చేసిన కోణాన్ని ధనాత్మక పరిమాణంగా తీసుకుంటారు.

అప సవ్య పరిభ్రమణం: గడియారంలో ముళ్ళు తిరిగే దిశకు వ్యతిరేక  దిశలో అంతిమ భుజం తిరుగుతున్నపుడు ఆ భ్రమణాన్ని  అప సవ్య పరిభ్రమణం అంటారు. ఈ దశలో చేసిన కోణాన్ని ఋనాత్మక పరిమాణంగా తీసుకుంటారు.

లంబకోణ త్రిభుజంలోని భుజాలు:TS X maths . త్రికోణ మితి 1

AB = θ యొక్క ఎదుటి భుజం

BC  = θ యొక్క ఆసన్న భుజం

AC = కర్ణం

త్రికోణమితీయ నిష్పత్తులు:


TS X maths . త్రికోణ మితి 2

కోణాలు – త్రికోణమితీయ నిష్పత్తులు:

TS X maths . త్రికోణ మితి 3 

పూరక కోణాలు మరియు  త్రికోణమితీయ నిష్పత్తుల మధ్య సంబంధం :

పూరక కోణాలు:- రెండు కోణాల మొత్తం 900 అయిన ఆ కోణాలను పూరక కోణాలు అంటారు.

TS X maths . త్రికోణ మితి 4

∠B = 900 అయిన ∠C  = 𝛉 అనుకొనుము అపుడు ∠A = 900 − 𝛉 అగును.     

TS X maths . త్రికోణ మితి 5

     పై వాటి నుండి

sin (90 – θ) = cos θ; cos (90 – θ) = sin θ

tan (90 – θ) = cot θ; cot (90 – θ) = tan θ

sec (90 – θ) = cosec θ; cosec (90 – θ) = sec θ

త్రికోణమితీయ సర్వ సమీకరణాలు:

1) sin2A + cos2A = 1

sin2A = 1 – sin2A; cos2A = 1 – sin2A

2) sec2 – tan2A = 1

sec2A = 1 + tan2A; tan2A = sec2A – 1

3) cosec2A – cot2A = 1

cosec2A = 1 + cot2A; cot2A = cosec2A – 1

 

 

12   . త్రికోణమితి అనువర్తనాలు 

 

దృష్టి రేఖ : ఒక వస్తువు పైనున్న ఒక బిందువు నుండి పరిశీలకుని కాంతిని కలిపే రేఖను దృష్టి రేఖ అంటారు. 
క్షితిజ సమాంతర రేఖ :
పరిశీలకుని కంటి నుండి భూమికి సమాంతరంగా ఉండే విధంగా ఊహించే రేఖను క్షితిజ సమాంతర రేఖ అంటారు.

  TS X maths . త్రికోణ మితి అనువర్తనాలు 1

ఊర్థ్వ కోణం :దృష్టి రేఖ, క్షితిజ సమాంతర రేఖకు పైన ఉంటే క్షితిజ సమాంతర రేఖ తో  దృష్టి రేఖ చేయు కోణంను ఊర్థ్వ కోణం అంటారు.

TS X maths . త్రికోణ మితి అనువర్తనాలు 2

నిమ్న కోణం :దృష్టి రేఖ, క్షితిజ సమాంతర రేఖకు క్రింద ఉంటే క్షితిజ సమాంతర రేఖ తో   దృష్టి రేఖ చేయు కోణంను నిమ్న కోణం అంటారు.

TS X maths . త్రికోణ మితి అనువర్తనాలు 3

గమనిక :

ఎత్తులు మరియు దూరాలకు సంబంధించిన సమస్యలు సాధించడానికి కింది విషయాలను దృష్టిలో పెట్టుకోవాలి.

  • గణిత పరంగా సౌలభ్యం కొరకు టవర్లు, చెట్లు, భవనాలు, ఓడలు, పర్వతాలు మొ∥ వాటిని రేఖీయంగానే  పరిగణనలోకి తీసుకోవాలి.
  • ఊర్థ్వ కోణం లేదా నిమ్న కోణాన్ని క్షితిజ సమాంతర రేఖ ఆధారంగా తీసుకోవాలి.
  • సమస్యలో పరిశీలుస్తున్న వ్యక్తి ఎత్తు కుంటే , అతని ఎత్తుని ఉపేక్షించి సమస్యను సాధించాలి.

 

 

13. సంభావ్యత 

 

యాదృచ్చిక  ప్రయోగం: ఒక ప్రయోగంలో ఏ ఫలితం వస్తుందో ముందే చెప్పలేనిదై, ఆ ప్రయోగ ఫలితాల జాబితా ముందే తెలిసి ఉండి, ఒకే విధమైన పరిస్థితులలో ఎన్ని సార్లు అయినా చేయడానికి వీలుంటే, ఆ ప్రయోగాన్ని యాదృచ్చిక  ప్రయోగం అంటారు.

ఘటన : ఒక యాదృచ్చిక  ప్రయోగంనకు చెందిన ప్రతీ ఫలితాన్ని లఘు ఘటన లేదా ప్రాథమిక ఘటన అంటారు.

సంభావ్యత – ప్రాయోగిక వివరణ :

ఒక ఘటన (E ) యొక్క ప్రాయోగిక సంభావ్యత P (E ) ను లెక్కించుటకు సూత్రం

TS X maths సంభావ్యత 1

సంభావ్యత – సైద్దాంతిక వివరణ :

T అనే ఘటన యొక్క సైద్దాంతిక సంభావ్యత P (T) ను లెక్కించుటకు సూత్రం

TS X maths సంభావ్యత 2

పరస్పర వివృత లేదా విసర్జిత ఘటనలు:

ఒక ప్రయోగంలోని రెండు లేక అంతకన్నా ఎక్కువ ఘటనలలో ఒక ఘటన యొక్క సంభవము మిగిలిన అన్ని ఘటనల సంభవమును నిరోధిస్తే, ఆ ఘటనలను పరస్పర వివృత లేదా విసర్జిత ఘటనలు అంటారు.

పూర్ణ ఘటనలు: ఒక ప్రయోగంలోని అన్ని ఘటనల సమ్మేళనం ప్రతిరూప ఆవరణం అయిన , వాటిని పూర్ణ ఘటనలంటారు.

సమసంభవ ఘటనలు: ఒక ప్రయోగం లోని రెండు లేక అంతకన్నా ఎక్కువ ఘటనలు సంభవించడానికి సమాన అవకాశములు ఉంటే వాటిని సమసంభవ ఘటనలు అంటారు.

పూరక ఘటనలు – సంభావ్యత :

‘E కానిది’ అను ఘటనను TS X maths సంభావ్యత 2 చే చూపుతాము. దీనిని E యొక్క ‘పూరక ఘటన’ అంటాము.

   TS X maths సంభావ్యత 4

అసాధ్య లేదా అసంభవ ఘటన : ఒక ప్రయోగంలో ఒక ఘటన ఎప్పుడూ  సాధ్యపడక పోతే  దానిని అసాధ్య ఘటన అంటారు.

ఖచ్చిత ఘటన: ఒక ప్రయోగం లోని ఒక ఘటన యొక్క సంభవము ఖచ్చితం మరియు సంభావ్యత 1 అయిన దానిని ఖచ్చిత లేదా దృఢ ఘటన అంటారు.

గమనిక :సంభావ్యత నిర్వచనం   లోని లవము ఎల్లప్పుడు హారము కనా తక్కువ లేదా సమానము కావచ్చు. 0 ≤ P(E) ≤ 1.

పేక ముక్కలు – సంభావ్యత :

పేక ముక్కల కట్టలో 52 కార్డులు ఉంటాయి. వాటిలో ఒక్కొక్కటి 13( A, 1,2,3,4,5,6,7,8,9,10, J, Q, K గుర్తించబడిన) కార్డులు గల 4 విభాగాలుగా ఉంటాయి. ఆ విభాగాల గుర్తులు నలుపు స్పేడులు ( TS X maths సంభావ్యత 8) నలుపు కళావర్లు( TS X maths సంభావ్యత 9 ) ఎరుపు హృదయం గుర్తులు (TS X maths సంభావ్యత 7) మరియు ఎరుపు డైమండ్లు ( TS X maths సంభావ్యత 6 ).

A ను ఏస్ అని, J ను జాకీ అని, Q ను రాణి అని మరియు K ను రాజు అని అంటారు.

Picture 102-425w263h

 

14.సాంఖ్యక శాస్త్రం 

సాంఖ్యక శాస్త్రాన్ని ఆంగ్లంలో ‘స్టాటిస్టిక్స్’ అని అంటారు. ఈ పదం ‘స్టాటస్’ అనే లాటిన్ పదం నుండి, ‘స్టాటిస్టా’ అనే ఇటాలియన్ పదం నుండి లేదా ‘స్టాటిస్టిక్స్’ అనే గ్రీకు పదం నుండి ఆవిర్భవించింది. వీటి అర్థం ‘రాజ్యం’.   

సాంఖ్యక శాస్త్ర పితామహుడు సర్ రోనాల్డ్ ఫిషర్ .

సాంఖ్యక శాస్త్రం :దత్తాంశ సేకరణ, వర్గీకరణ, వ్యాఖ్యానాలతో కూడిన గణిత శాస్త్ర విభాగాన్ని ‘సాంఖ్యక శాస్త్రం’ అంటారు.

కేంద్రీయ స్థాన విలువలు :

కేంద్రీయ స్ధాన విలువలు మూడు రకాలు అవి: (i) అంకగణిత సగటు (ii) మధ్య గతం  (iii) బాహులకం

అంకగణితం :

అవర్గీకృత దత్తాంశం యొక్క అంకగణిత సగటు:

• x1, x2, …. xn రాశుల యొక్క అంకగణిత సగటు TS X maths సాంఖ్యక శాస్త్రం 1   

• x1, x2, …. xn రాశుల యొక్క పౌనఃపున్యాలు వరుసగా f1, f2, …. fn సార్లు పునరావృతం అయిన అంకగణిత సగటు

TS X maths సాంఖ్యక శాస్త్రం 2           

తరగతి మధ్య విలువ : TS X maths సాంఖ్యక శాస్త్రం 3

వర్గీకృత దత్తాంశం యొక్క అంక గణిత సగటును కనుగొనే పద్దతులు   :

ప్రత్యక్ష పద్ధతి :   TS X maths సాంఖ్యక శాస్త్రం 4  xi  అనేది i వ తరగతి  మధ్య విలువ;fi అనగా i వ తరగతి  పౌనఃపున్యం .

విచలన పద్ధతి లేదా ఊహించిన సగటు పద్ధతి : TS X maths సాంఖ్యక శాస్త్రం 5   ;  di = xi – a మరియు a అనేది ఊహించిన సగటు.

సోపాన విచలన పద్ధతి: TS X maths సాంఖ్యక శాస్త్రం 6 , h అనేది తరగతి అంతరం .

మధ్యగతం

దత్తాంశం లోని రాశుల యొక్క మధ్య విలువలను మధ్యగతం ఇస్తుంది.

అవర్గీకృత దత్తాంశం యొక్క మధ్యగతం:
  • ముందుగా దత్తాంశంలో ఇచ్చిన రాశులను ఆరోహణ క్రమంలో అమర్చాలి.
  • ఒకవేళ రాశుల సంఖ్య ‘n’ బేసి సంఖ్య అయిన మధ్యగతం = TS X maths సాంఖ్యక శాస్త్రం 7  వ రాశి
  • n’ సరి సంఖ్య అయిన మధ్యగతం =TS X maths సాంఖ్యక శాస్త్రం 8
అవర్గీకృత దత్తాంశం యొక్క మధ్యగతం:

మధ్యగతం =TS X maths సాంఖ్యక శాస్త్రం 9

 l = మధ్యగత తరగతి దిగువ హద్దు

n = దత్తాంశంలోని రాశుల సంఖ్య

f = మధ్యగత తరగతి యొక్క పౌనఃపున్యం

h = మధ్యగత తరగతి అంతరం

  బాహులకం

•ఇవ్వబడిన రాశులలో ఎక్కువ సార్లు పునరావృతం అయ్యే రాశిని ‘బాహులకం’ అంటారు.

బాహులకం =TS X maths సాంఖ్యక శాస్త్రం 10

l = బాహులక తరగతి దిగువ హద్దు

f0 = బాహులక తరగతికి ముందున్న తరగతి యొక్క పౌనఃపున్యం

f1 = బాహులక తరగతి యొక్క పౌనఃపున్యం

h = బాహులక తరగతి అంతరం

•అంకగణిత సగటు, మధ్యగతము మరియు బాహులకము ల మధ్య అనుభావిక సంబంధం :

బాహులకం  = 3(మధ్యగతం ) – 2(అంకగణిత సగటు) .


 

Visit my Youtube Channel: Click on Below Logo

 

AS_Tutorioal_Png

TS VIII CLASS MATHS CONCEPT FEATURE IMAGE

TS 8th Class Maths Concept

 

Studying maths in VIII class successfully meaning that children take responsibility for their own learning and learn to apply the concepts to solve problems.

   This notes is designed by the ‘Basics in Maths team’. These notes to do help students fall in love with mathematics and overcome fear.

1. RATIONAL NUMBERS

• Natural numbers: All the counting numbers starting from 1 are called Natural numbers.

1, 2, 3… Etc.

• Whole numbers: Whole numbers are the collection of natural numbers.

     0, 1, 2, 3 …

• Integers: integers are the collection of whole numbers and negative numbers.

….., -3, -2, -1, 0, 1, 2, 3….

• Rational numbers: The numbers which are written in the form of p/q, where p, q are integers and q ≠ 0 are called rational numbers. Rational numbers are denoted by Q.

rational number table

Properties of Rational numbers

• Natural numbers:

1.Closure property:-

natural numbers closed property

     2.Commutative property:-

natural numbers commutative

3. Associative  property:-

natural nubers associative

• Whole numbers:

        1. Closure property:-

whole numbers closed

     2.Commutative property:-

commutative property whlole numbers

      3. Associative  property:-

whole numbers associative

• Integers:

             1. Closure property:-

closure

         2.Commutative property:-

commutative property

         3. Associative  property:-

associative property

• Rational numbers:

         1. Closure property:-

rarional numbers closed

          2.Commutative property:-

rational numbers commutative

           3. Associative  property:-

rational numbers associative

  Additive identity:-

  1 + 0 = 0 + 1 = 1,   3/2 + 0 = 0 + 3/2 = 3/2

• For any rational number ‘a’, a + 0 = 0 + a

• 0 is the additive identity.

Additive inverse:-

2 + (-2) = (-2) + 2 = 0,  5 + (-5) = (-5) + 5 = 0

• For any rational number ‘a’, a+ (-a) = (-a) + a = 0

• Additive inverse of a = -a and additive inverse of (-a) = a

Multiplicative identity:-

2 × 1 = 1 × 2 = 2,    6 ×1/6 = 1 × 1/6 = 1/6

• For any rational number ‘a’, a × 1 = 1 × a = a

• 1 is the multiplicative identity.

Multiplicative inverse:-

2 × 1/2 = 1/2 × 2 =1

For any rational number ‘a’,

       a × 1/a = 1/a × a = 1

• multiplicative inverse of a =1/a

• Multiplicative inverse of  1/a= a.

Distributive property:-

For any three rational numbers  a, b and c,

  a × (b + c) = (a × b) + (a × c)

 3/2×(5/3+1/5)=(3/2×5/3)+(3/2×1/5)

 Representing rational numbers on a number line:

number line

Ex: represent 29/6 on a number line

equation this lies between 4 and 5

mixed fraction

Divide the number line between 4 and 5 into 6 equal parts. Mark 5th part counting from 4.

The role of zero:

• If 0 is added to any rational number, then the rational number remains the same.

For any rational number ‘a’ a + 0 = a = 0 + a

• 0 is the additive identity.

• Natural numbers does not have additive identity.

Additive inverse:-

for any rational number ‘a’

             a + (-a) = 0 = (-a) + a

   3 + (-3) = 0,   10 + (-10) = 0

• additive inverse of ‘a’ is ‘-a’ and additive inverse of  ‘-a’ is ‘a’

 The role of 1:

• If 1 is multiplied to any rational number, then the rational number remains same.

For any rational number ‘a’ a × 1 = a = 1 × a

  • 1 is the multiplicative identity.

Multiplicative inverse:-

3 × 1/3 = 1 = 1/3 × 3

for any natural number ‘a’

a × 1/a = 1 = 1/a ×a

• Multiplicative inverse of ‘a’ is ‘1/a’ and multiplicative inverse of ‘1/a’ is ‘a’

Distributive property:

For any 3 rational numbers a, b and c, a (b + c) = ab + ac

Ex:-  1/3 (2/5 + 1/5) = 1/3(3/5) = 3/15

1/3× 2/5 + 1/3 × 1/5 = 2/5 + 1/5 = 3/5

Inserting rational numbers between given two numbers:

• There infinitely many rational numbers between given two numbers.

• We have two methods to find rational numbers between two numbers.

First method: – First we have to convert given rational numbers as the same denominator and write the rational numbers which come between given numbers.

rational number between two numbers

 

 

 

Second method: – if a and b any given rational numbers then a/bis a rational number between a and b.

rational number between two numbers

Decimal representation of rational numbers

The decimal expansion of rational is either terminating or non-terminating repeating decimal.

 Note:-Decimal numbers with the finite no. of digits is called terminating Decimal numbers with the infinite no. of digits is called non- terminating decimal. In a decimal, a digit or a sequence of digits in the decimal part keeps repeating itself infinitely. Such decimals are called non- terminating repeating decimals.

Terminating decimals:

      Consider a rational number

long division method 

Non-terminating decimals:

Consider a rational number

long division method 2

       


2. LINEAR EQUATIONS IN ONE VARIABLE

Equations: An algebraic equation is the equality of algebraic expressions involving variables and constants.

  • It has an equality sign.
  • The expression on the left of the equality sign is called the LHS (Left Hand Side) and right of the equality is called RHS (Right Hand Side) of the equation.
  • In an equation, the value of RHS and LHS are equal. This happens to be true only for certain values of the variable. This value is called the solution of the equation.

Linear equations: If the degree of the equation is 1, then it is called a linear equation.

Ex:  2x – 3 = 5, x = 3y, 5x + 3y = 3 and so on.

Simple equations or linear equations in one variable: An equation of the form ax + b = 0 or ax = b where a, b are constants and a≠0is called a linear equation in one variable or simple equation.

Ex: 2x + 3 = 7, x = 3, 2 – 3x = – 1 and so on.

Note:  if we transpose terms from LHS to RHS or RHS to LHS

‘+’ quantity becomes ‘– ‘quantity

‘–’ quantity becomes ‘+ ‘quantity

‘×’ quantity becomes ‘÷ ‘quantity

‘÷’ quantity becomes ‘× ‘quantity

Solving simple equation having the variable on one side:

Ex: solve the equation 2x + 32 = 2

              Sol:   2x = 2 – 32 (transpose 32 to RHS)

                           2x = – 30

                          x = – 30/2 (transposing to RHS)

                    ∴ solution of 2x + 32 = 2 is – 10.

Solving simple equation having the variables on both sides:

Ex:  solve the equation 9y + 5 = 15y – 1

Sol: given equation is 9y + 5 = 15y – 1

                                          9y – 15y = – 1 – 5 (Transposing 5 to RHS and 15y to LHS)

                                   –6y = – 6

                               y = –6/–6 = 1

                                   y = 1

∴ solution of the equation 9y + 5 = 15y – 1 is 1.

Method of cross Multiplication:

viii math cross multiplication  = ad = bc

Multiply the numerator of the LHS by the denominator of the RHS and multiply the numerator of the RHS by the denominator of LHS. This method is called the cross multiplication method.

Reducing Equations to simpler form – Equations Reducible to Linear form:

Ex: solve the equation ts viii math simple equation

Sol: given equation is ts viii math simple equation

 ⇒ 7(5x + 2) = 12(2x + 3) (∵ by cross multiplication method)

 ⇒ 35x + 14 = 24x + 36

 ⇒ 35x – 24x = 36 – 14 (by transposing terms)

 ⇒ 11x = 22

       ∴ x = 2  is the solution of given equation.


3.CONSTRUCTION OF QUADRILATERALS

Quadrilateral: A closed figure with four sides is called a quadrilateral.

 It has 4 sides, 4 vertices, 4 angles and two diagonals.

Types of quadrilaterals:

1.Trapezium: A quadrilateral with at least one pair of parallel sides is called a trapezium.

Opposite sides are not equal and diagonals are not equal

2.Parallelogram: A quadrilateral with two pairs of opposite sides are parallel is called a parallelogram.

Opposite sides are parallel and equal

Opposite angles are equal

Diagonals are not equal.

Diagonals bisect each other.

3.Rectangle: A parallelogram with one of the angles 900 is called a rectangle.

   Opposite sides are parallel and equal

  Opposite angles are equal

  Diagonals are equal.

Diagonals bisects each other.

4.Rhombus: A parallelogram with adjacent sides are equal is called rhombus.

All sides are equal

Opposite angles are equal

Diagonals are not equal.

Diagonals bisect each other and angle between diagonals is 900  

5.Square: A rhombus with four right angles is called a square.

All sides are equal

Opposite angles are equal

Diagonals are equal.

Diagonals bisect each other and angle between diagonals is 900  

6.Kite: A quadrilateral with two pairs of adjacent sides is called a kite.

properties of quadrilatral

 

Constructing a Quadrilateral:

We can draw quadrilaterals when the following measurements are given.

  1. When 4 sides and one angle are given
  2. When 4 sides and one diagonal are given
  • When three sides and two diagonals are given
  1. When two adjacent sides are given and three angles are given
  2. When three side and two included angles are given

Type of Quadrilateral – No, of individual measurements:

 

Type of quadrilateralNo. of individual measurements
Quadrilateral5
Trapezium4
Parallelogram3
Rectangle3
Rhombus2
Square1

Example 1:

Construct the quadrilateral PQRS with the measurements: PQ = 5.5cm, QR = 3.5 cm, RS= 4 cm, PS = 5 cm and ∠P = 450.

Steps of construction:construction of quadrilaterals 2

  1. Construct a line segment PQ with a radius 5.5cm.
  2. With the center, P draw a ray and an arc that are equal to 450 and 5 cm.
  3. These intersecting points are kept as S.
  4. With centers S, Q draws two arcs equal to Radius 4 cm, 3.5 cm respectively.
  1. The intersecting point of these two arcs is kept as R.
  2. Join Q, R, and S, R
  3. Therefore, the required quadrilateral PQRS formed.

Example 2

Construct the parallelogram PQRS with the measurements: PQ = 4.5cm, QR = 3 cm and ∠PQR = 600

In parallelogram PQRS with the measurements: PQ = 4.5cm, QR = 3 cm and ∠PQR = 600

⇒ RS = 4.5cm, PS = 3 cm (in a parallelogram opposite sides are equal)

Steps of construction      ts viii math construction of quadrilaterals

  1. Construct a line segment PQ with a radius 4.5cm.
  2. With the center, Q draws a ray and an arc that are equal to 450 and 3 cm.
  3. These intersecting points are kept as R.
  4. With centers R, P draws two arcs equal to radius 4 cm, 3.5 cm respectively.
  1. The intersecting point of these two arcs is kept as S.
  2. Join P, S and R, S
  3. Therefore, the required parallelogram PQRS formed.

4. EXPONENTS  AND POWERS

We know that a2 = a × a (two times)

a3 = a × a × a (three times)

⇒ a × a × a × a × a … m times = am

Here, am is called the exponent form.

  • In exponent, form am, ‘a’ is base, ‘m’ is exponent, power, or index.
  • We read am as a raised to the power of m.

Laws of exponents:

ts viii math laws of exponents

Express small numbers in Standard form by using exponents:

  • If a number is expressed in the form of m ×10n where 1≤m<10, n is any integer, then that number is in standard form.
  • Very small numbers can be expressed in standard form using negative exponents.

Ex:    express 0.0000456 in standard form

Sol : 0.0000456 = 456/10000000 = 456/107 = 456 × 10-7.


5. COMPARING QUANTITIES USING PROPORTION

Ratio: comparing two quantities of same kind by using division is called ratio.

Ratio of two quantities a and b is denoted by a: b.

Per cent: per cent means ‘per hundred’ or out of hundred’. The symbol % stands for percent.

Discount:

Marked price (M.P): – The price printed on an article by manufacturer is called marked price. It is also called as list price or usual price or catalogue price.

Discount: – Discount is the reduced marked price. It is generally given as percent of the marked price. Discount is always depending on the marked price.

Net price or selling price: – The difference between the M.P and discount is called net price or selling price.

Example:  A T.V is marked at ₹ 18000 and discount allowed on it is 10%. What is the amount of discount and its sale price?

Ans:  Given marked price = ₹18000, discount percentage = 10%

Now, discount = 10% 0f 18000 = inline fn_cm emph{}frac{10}{100}times 18000= 1800

Selling price = marked price – discount = 18000 – 1800 = 16200.

∴ selling price = ₹ 16,200.

Profit and loss:

Cost price (C.P.): – Cost price is the price for which an article is bought or the price paid by a customer to by an article.

Selling price (S.P.): – Selling price is the price for which an article is sold.

Profit: – If the Selling price is greater than the cost price, then we get the profit.

            Profit = S.P – C.P.

Loss:If the Selling price is less than the Cost price then, we get loss.  

          Loss = C.P – S.P.

Some formulae in profit and loss:

ts viii math profit and loss

For-Profit:

ts viii math profit formula

For Loss:

ts viii math loss formula

Sales tax/Value added tax:

Government collects taxes on every sale. This is called VAT. Shop keeper collect this from the customers and pay it to the Govt.

VAT is changed on the Selling price of an item and will be included in the bill. VAT is an increase percent of selling price.

Example:

The cost of an article is ₹ 500. The sales tax is 5%. Find the bill amount.

Ans: cost price of an article = ₹500

% of Sales tax = 5

Sales tax paid = ₹

Bill amount = cost price + sales tax paid

= 500 + 25

= ₹ 525.

Simple interest:

Principal: – The money which is borrowed is called ‘principal’.

Rate of interest: – percentage of interest per year is called rate of interest.

Time: – The period for which money is called time.

Interest: – The money which is paid for the use of the principal is called interest.

Amount: – The total money which is paid after the expiry of the time is called amount.

TS VIII MATH SIMPLE INTEREST

Compound Interest: Compound interest allows us to earn interest on interest.

TS VIII MATH COMPOUND INTEREST

  • The time period after which interest is added to principal is called conversion period. When interest is compounded h yearly, there are two conversion periods in a year. In such case, alf year rate will be half of the annual rate.

6. SQUARE ROOTS AND CUBE ROOTS

 

Square:  Square number is the number raised to the power 2. The number obtained by the number multiplied by itself.

  • If a natural number p can be expressed as q2, where q is also natural, then p is called a square number.

Ex: – 1) square of 9 = 92 = 9× 9 = 18, 2) square of 4 = 42 = 4× 4

Perfect Square:  A natural number is called a perfect square if it is the square of some natural number.

Ex: – 1,4,9, …etc.

Properties of perfect square:

  1. The square of an even numbers is always an even number.

Ex: – 22 = 4 (4 is even), 62 = 36 (36 is even), here 2, 6 are an even number.

  1. The square of an odd number is always an add number.

Ex: – 32 = 9 (9 is even), 152 = 225 (225 is even), here 3, 15 are an odd number.

  • The square of a proper fraction is as proper fraction less than the given fraction.

Ex: –

  1. The square of decimal fraction less than 1 is smaller than the given decimal.

Ex: – (0.3)2 = 0.09 < 0.03.

  1. A number ending with 2, 3, 7 or 8 is never a perfect square.

 

Ex: – 72, 58, 23 are not perfect squares.

  1. A number ending with an odd no. of zeros is never a perfect square

Ex: – 20, 120,1000 and so on.

Patterns in square numbers:

  1. 1 + 3 = 4 = 22

1 + 3+ 5 = 9 = 32

1 + 3 + 5 +7 = 16 = 42

…………………………….

⇒ sum of n odd natural numbers = n2

  1. Difference between two consecutive square numbers:

22 − 11 =4 −1 = 3 = 2 + 1

32 − 21 =9 −4 = 5 = 3 + 2

42 − 31 =16 −9 = 7 = 3 + 4

⇒ for any natural number ‘m’, (m + 1)2 – m2 = (m+1) + m

  1. Pythagorean triplet:

Three natural numbers a, b and c are said to form a Pythagorean triplet if, c2 = a2 + b2

For every natural number a > 1, (2a, a2 – 1, a2 + 1).

Ex: – if we put a = 3 in (2a, a2 – 1, a2 + 1), then we get Pythagorean triplet (6, 8, 10).

  1. Between two consecutive square numbers m2 and (m + 1)2, there are 2m non-perfect square numbers.

Ex: – 22, 32 are two consecutive square numbers

Non-perfect square numbers between 22 and 32 are:5, 6, 7, and 8

⇒ 2(2) = 4 Non-perfect square numbers are there in between 22 and 32

  1. Using the identities (a + b)2 = a2 + 2ab + b2, (a – b)2 = a2 – 2ab + b2 to evaluate square numbers.

 

Ex: – 122 = (10 + 2) 2 = 102 + 2 (10) (2) + 22 = 100 + 400 + 4 = 144

92 = (10 – 1)2 = 102 – 2 (10) (1) + 12 = 100 – 20 + 1 = 81

  1. Using the identity (a – b) (a + b) = a2 – b2 to find the product of two consecutive odd or two consecutive even numbers.

Ex: – 9 × 11 = (10 – 1) (10 + 1) = 102 – 1 = 99

20 × 22 = (21 – 1) (21 + 1) = 212 – 1 = 441 – 1 = 440.

 

Square Root: the square root of a number x is that number when multiplied by itself gives x as the product. The square root of x is denoted by sqrt{x}.

Ex: –

Methods of Finding Square root of given Number

Prime factorization method: –

Steps:

  1. Resolve the given number into prime factors.
  2. Make pairs of similar factors.
  3. The product of prime factors, choosing one out of every pair gives the square root of the given number.

Ex: – 16

Prim factors of 16 = 2 ×2× 2× 2

= 2 × 2 = 4

∴ square root of 16 = 4

Division method: –

Steps:

  1. Mark off the digits in pairs starting with the unit place. Each pair and remaining one digit are called a period.
  2. Think of the largest number whose square is equal to or just less than the first period. Take this number as the divisor as well as quotient.
  3. Subtract the product of divisor and quotient from the first period and bring down the next period to the right of the remainder. this becomes the new dividend.
  4. Now, a new divisor is obtained by taking twice the quotient and annexing with it a suitable digit which is also taken as the next digit of the quotient, chosen in such a way that the product of the new divisor and this digit is equal to or just less than the new dividend.
  5. Repeat steps 2, 3, and 4 till all the periods have been taken up. Thus, the obtained quotient is the required square root.

Finding the square root through subtraction of successive odd numbers:

  • Subtract first odd number (1) from a given number
  • Subtract the second odd number (3) from the above result.
  • Continue this process until the result will be zero (0).
  • Count the steps involved above the process. No. of steps is the required answer.

Ex: find square root of 16

16 – 1 = 15; 15 – 3 = 12; 12 – 5 = 7; 7 – 7 = 0

After 4 steps we got 0.

∴ square root of 16 = 4.

The square root of a number in decimal form

Make the no. of decimal places even, by affixing a zero, if necessary. Now periods and find out the square root by the long division method.

Put the decimal point in the square root as soon as the integral part is exhausted.

Ex: – To find the square root of 79.21

ts viii class squre root of decimal number

The square root of a decimal number which is not perfect square:

if the square root is required to correct up to two places of decimal, we shall find it up 3 places of decimal and then round it off up to two decimal places.

if the square root is required to correct up to three places of decimal, we shall find it up 4 places of decimal and then round it off up to three decimal places.

Ex: – To find the square root of 0.8 up to 2 decimal places

ts viii math square root of decimal number which is not perfect square

Cube of a number:

The cube of a number is that number raised to the power 3.

Ex: – cube of 0.3 = 0.33 = 0.027

Cube of 2 = 23 = 8

Perfect cube:

If a number is a perfect cube, then it can be written as the cube of some natural numbers.

Ex: – 1, 8, 27, and so on.

Cube root:

The cube root of a number x is that number which when multiplied by itself three times gives x as the product.

Cube root of x is denoted by  VIII maths cube root of x

ts viii math perfect cube

Methods of finding the cube root of given Number

Prime factorization method: –

Steps:

  1. Resolve the given number into prime factors.
  2. Make triplets of similar factors.
  3. The product of prime factors, choosing one out of every triplet gives the cube root of the given number.

Ex: – 27

Prim factors of 27 = 3 ×3×3

= 3

∴ cube root of 27 = 3

Estimating the cube root of a number:

Ex:  estimate the cube root of 2744

Start making groups of through estimation. The first group is 744 and the second group is 2

2      744

The first group i.e., 744will give us the units digit of the cube root. As 744 ends with 4, its cube root also ends with 4. So, the unit place of cube root will be 4.

In second group number is 2

We know that 13 < 2 < 23

As the smallest number is 1, t becomes the tens place of the required cube root.

∴  cube root of 2744 = 14.


7. FREQUENCY DISTRIBUTION TABLES AND GRAPHS

Data: An information available in the numerical form or verbal form or graphical form that helps in taking decisions or drawing conclusions is called data.

Measures of central tendency:

The measures of central tendency are 3 types. They are: 1. Arithmetic mean 2.  Median and 3.  Mode.

1.Arithmetic Mean:

Arithmetic mean of x1, x2, x3, …. x n is  TS VIII maths Frequency distribution table 1 ⇒ TS VIII maths Frequency distribution table 2

Where ∑xi represents the sum of all xi ’s; ‘i’ takes the values from 1 to n.

Arithmetic mean by deviation Method: –

TS VIII maths Frequency distribution table 3

A is assumed mean.

∎Sum of the deviations of all observations from the estimated mean is zero.

∎Arithmetic mean is a representative value of the entire data.

∎Arithmetic mean depends on both no. of observations and value of each observation in a data.

∎Arithmetic mean is unique value of data.

∎When all the observations of the data are increased or decreased by a certain number, the mean also increase or decrease by the same number.

∎When all the observations of the data are multiplied or divided by a certain number, the mean also multiplied or divided by the same number.

2.Median:

Median is the middle most value of the given data.

First, we arrange given data in ascending or descending order.

If n is the no. of observation in a data, then

Median = TS VIII maths Frequency distribution table 4 observation, when n is odd.

Median =TS VIII maths Frequency distribution table 5   when n is even.

∎Median is the middle most observation of the data.

∎It depends on no. of observations and middle observations of the ordered data

∎ It not effected by any change in extreme values.

3.Mode:

Mode is the most frequently occurring observation of given data.

∎Mode depends neither on no. of observations nor value of all observations.

∎It is used to analyse both numerical and verbal data.

∎ There may be two or three or many modes for the same data.

Grouped data:

If we organize the data by dividing it into convenient groups, then it is called Grouped data.

Frequency distribution or Frequency table:

Representation of classified distinct observations of the data with frequencies is called frequency distribution.

Class intervals: Small groups in a data are called Class intervals

Ex: 0 – 5, 5- 10, …

Limits and boundaries:

In the class interval 5 – 10, 5 is called lower limit and 10 is called upper limit.

 Boundaries: Average of upper limit of first class and lower limit of second class is becomes the upper boundary first class and lower boundary of second class.

These boundaries are also called ‘true class limits’

TS VIII maths Frequency distribution table 10
Length of the class: Difference between upper and lower boundaries of a class is called Length of the class.

From the above table length of the class 0.5 – 10.5 is 10.5 – 0.5 = 10

Range: The difference between highest and least value of given data is called range of the data.

Construction of grouped frequency Distribution:

Ex: 1, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7

Highest value = 7; least value = 1

Range = 7 – 1 = 6.

Class interval =TS VIII maths Frequency distribution table 6

= TS VIII maths Frequency distribution table 7 = 0.8 approximately.

TS VIII maths Frequency distribution table 8

Characteristics of grouped frequency distribution:

  1. It divide the data onto convenient and small groups called class intervals.1. 
  2. Class intervals like 1 – 10, 11 – 20 … are called inclusive class intervals. Both lower and upper limits of a particular class belong to that particular class.
  3. Class intervals like 0 – 10, 10 – 20 … are called exclusive class intervals. Only lower limit of particular class belongs to that class but not its upper limit.
  4. In exclusive class intervals, both limits and boundaries are equal.
  5. In inclusive class intervals, limits and boundaries are not equal.
  6. Individual values of all observations can not be identified from the frequency table, but the value of each observation of a particular class assumed to be the average of upper and lower boundaries of that class. This value is called ‘class mark’ or ‘mid value’.

Less than and greater than Cumulative frequencies:

The distribution that represents upper boundaries of the classes and their respective less than cumulative frequencies is called ‘less than cumulative frequency distribution’

The distribution that represents lower boundaries of the classes and their respective greater than cumulative frequencies is called ‘greater than cumulative frequency distribution’

Class intervalsfrequencyLBGreater than cumulative frequencyUBLess than cumulative frequency
0 – 57036 + 7 = 4357
5 – 1010526 + 10 = 36107+10 = 17
10 – 15151011 + 15 = 261517 + 15 = 32
15 – 208153 + 8 = 112032 + 8 = 40
20 – 2532032540 + 3 = 43

Graphical representation of the Data:

Bar graph:

A display of information using vertical or horizontal bars of uniform width and different lengths being proportional to the respective values is called bar graph.

Ex:

TS VIII maths Frequency distribution table 11

Histogram:

A graphical representation of frequency distribution of exclusive class intervals is called histogram.

Ex:

TS VIII maths Frequency distribution table 12

TS VIII maths Frequency distribution table 13

Steps on Construction:

Step-1:  If class intervals are inclusive, then convert them into the exclusive form  

Step-2: Choose a suitable scale on the X – axis and mark the class intervals on it.

Step-3: Choose a suitable scale on the Y – axis and mark the frequencies on it.

               Scale: On X – axis 1cm = 10 units

On Y – axis 1 cm = 10 units

Step-4: Draw rectangle with class intervals as bases and the corresponding frequencies as the corresponding heights.

Histogram with varying Base widths:

Ex:

TS VIII maths Frequency distribution table 15

TS VIII maths Frequency distribution table 14

TS VIII maths Frequency distribution table 16

Steps on Construction:

Step-1:  If class intervals are inclusive, then convert them into the exclusive form  

Step-2: Choose a suitable scale on the X – axis and mark the class intervals on it.

Step-3: Choose a suitable scale on the Y – axis and mark the frequencies on it.

               Scale: On X – axis 1cm = 10 units

On Y – axis 1 cm = 10 units

Step-4: Draw rectangle with class intervals as bases and the corresponding frequencies as the corresponding heights.

Frequency polygon:

Ex:

TS VIII maths Frequency distribution table 19

TS VIII maths Frequency distribution table 20

Steps on Construction:

Step-1:  Calculate the mid points of every class interval given in the data.

Step-2: Choose a suitable scale on the X – axis and mark the class intervals on it.

Step-3: Choose a suitable scale on the Y – axis and mark the frequencies on it.

               Scale: On X – axis 1cm = 10 units

On Y – axis 1 cm = 10 units

Step-4: Draw the histogram for this data and mark the midpoints of the tope

Step-5: Join the mid points successfully.      

Frequency curve:

Ex:          

TS VIII maths Frequency distribution table 21          

TS VIII maths Frequency distribution table 22

Steps on Construction:

Step-1:  find the class mark of the class intervals.

Step-2: Choose a suitable scale on the X – axis and mark the class intervals on it.

Step-3: Choose a suitable scale on the Y – axis and mark the frequencies on it.

               Scale: On X – axis 1cm = 10 units

On Y – axis 1 cm = 2 units

Step-4:  Plot the points (which are in the above table) on graph

Step-5: Join the consecutive points by a free hand curve.

Less than cumulative frequency curve:

Ex:

ClassFrequencyUBL. C. F
0 – 102102
10 – 205207
20 – 3033010
30 – 4014011
40 – 5045015
50 – 6026017

TS VIII maths Frequency distribution table 23

Steps on Construction:

Step-1:  If class intervals are inclusive, then convert them into the exclusive form  

Step-2: Construct the less than cumulative frequency table.

Step-3: Choose a suitable scale on the X – axis and mark the upper boundaries class intervals on it.

Choose a suitable scale on the Y – axis and mark the cumulative frequencies on it.

               Scale: On X – axis 1cm = 10 units

On Y – axis 1 cm = 2 units

Step-4:  If ‘x’ denotes the upper boundary of class interval and ‘y’ denotes the corresponding cumulative frequency of particular class, then plot (x, y) on the graph.


8.EXPLORING GEOMETRICAL FIGURES  


 Congruent figures: The figures which have same shape and size are called congruent figures.

TS VIII maths Exploring Geometrical Figures 1

Flip: Flip is a transformation in which a plane figure is reflected across a line, creating a mirror image of the original figure.

TS VIII maths Exploring Geometrical Figures 2

Rotation: Turning round centre is called Rotation. The distance from the centre to any point on the shape stays the same. Every point makes a circular round the centre.

TS VIII maths Exploring Geometrical Figures 3

Similar figures: The figures which have same shape but not in size are called similar figures.

TS VIII maths Exploring Geometrical Figures 4

Dilation: The method of drawing enlarged or reduced similar figures is called Dilation.

Constructing Dilation:

Ex: Construct a dilation with scale factor 3, of a triangle

Steps on Construction:

Step-1:  Draw a ∆ABC and choose the centre of dilation O which is not on the triangle. Join every vertex of the triangle from O and produce

TS VIII maths Exploring Geometrical Figures 5

Step-2: By using compasses, mark three points A’, B’, C’ on the projection so that OA’ = 3OA; OB’ = 3OB and OC’ = 3OC.

TS VIII maths Exploring Geometrical Figures 6

Step-3:  Join A’B’, B’C’, C’A’. We observe that ∆ABC~∆A’B’C’

TS VIII maths Exploring Geometrical Figures 7

Symmetry:

In symmetry there are 3 types: 1. Line of symmetry, 2. Rotational symmetry and 3. Point symmetry.

1.Line of symmetry: The lines which cuts the figures exactly halves is called line of symmetry.

TS VIII maths Exploring Geometrical Figures 8

2.Rotational symmetry:

When an object is rotated about its centre, it comes same position after some rotation, then it is called rotational symmetry.

No. of rotations to get initial position of an object is called ‘order of position.

Ex: When a rectangle is rotated about its centre its shape resembles the initial position two times.

Order of rotation of rectangle is 2.

3.Point symmetry:

The figure looks the same either we see it from upside or it from down side is called ‘point of symmetry.

Ex: H, S, I have point of symmetry.

Tessellations: The patterns formed by repeating figures to fill a plane without gaps or overlaps are called ‘Tessellations’.


9.AREA OF PLANE FIGURES

Area of triangle:

TS VIII maths Area of plane figures1

The area of triangle with base ‘b’ and height ‘h’ is TS VIII maths Area of plane figures square units

Area of Rectangle:

TS VIII maths Area of plane figures2

The area of rectangle with breadth ‘b’ and length ‘l’ is l × b square units.

Area of Square:

TS VIII maths Area of plane figures 3

The area of triangle with side ‘a’ is a × a = a2 square units.
Area of parallelogram:

TS VIII maths Area of plane figures4

The area of parallelogram with base ‘b’ and height ‘h’ is b × h square units.

Area of Rhombus:

TS VIII maths Area of plane figures5

 The area of Rhombus with lengths of diagonal d1, d2 is TS VIII maths Area of plane figures12 square units.  

Area of Trapezium: 

TS VIII maths Area of plane figures 7
The area of Trapezium whose lengths of parallel sides a, b and distance between the parallel side’s ‘h’ is TS VIII maths Area of plane figures6   square units.

Area of Quadrilateral: 

TS VIII maths Area of plane figures 9
The area of Quadrilateral whose lengths of perpendiculars drawn from vertices to diagonal are h1, h2 and length of the diagonal ‘a’ is TS VIII maths Area of plane figures 8    square units. 

.Area of circle:

TS VIII maths Area of plane figures 10
The area of circle with radius ‘r’ is π r
2 square units.

Area of circular path or area of Ring:

TS VIII maths Area of plane figures 11
Area of ring = area of outer circle – area of inner circle

                         = πR 2 – π r2

= π(R 2 –  r2) square units.

Length of the arc:

TS VIII maths Area of plane figures 14

Length of the arc of a sector (l) is TS VIII maths Area of plane figures 13

Area of sector:

TS VIII maths Area of plane figures 17
area of sector
=TS VIII maths Area of plane figures 15

 


10.DIRECT AND INVERSE PROPORTIONS

Proportion: If a : b = c : d, then a, b, c and d are in proportion.

Direct proportion:

x and y are any two quantities are said to be in direct proportion, if x is increase (decrease), then y is increase (decrease).

TS VIII maths Direct and Inverse Proportions 1 where k is any constant

If x1 and x2 are the values of x corresponding to the values of y1 and y2 of y respectively, then TS VIII maths Direct and Inverse Proportions 2

Inverse proportion:

x and y are any two quantities are said to be in inverse proportion, if x is increase (decrease), then y is decrease (increase).

xy = k where k is any constant

If x1 and x2 are the values of x corresponding to the values of y1 and y2 of y respectively, then TS VIII maths Direct and Inverse Proportions 3

⇒ x1y1 = x2y2.

Compound proportion:

Change in one quantity depends upon the change in two or more quantities in some proportion, then we equate the ratio of the first quantity to the compound ratio of the other two quantities.

  • One quantity may be in direct proportion with the other two quantities.
  • One quantity may be in inverse proportion with the other two quantities.
  • One quantity may be in direct proportion with one of the two quantities and inverse proportion to with the remaining quantity.

11.ALGEBRAIC EXPRESSIONS

Term:  Term is the product of constant and one or more variables.

Ex: 2x, 3xy. 5x2yz etc.

Algebraic Expression: Terms are added or subtracted to form an Algebraic Expression.

Ex; 2x + 3, 2y – 3x, 4xyz – 3x3y etc.

Monomial: If an expression contains only one term then it is called monomial.

Ex; x, 3x, – 5yz

Binomial: If an expression contains two terms, then it is called Binomial.

Ex: x + 3, x – y, 3xy – 2zx etc.

Trinomial: If an expression contains three terms, then it is called Trinomial.

Ex: x + 3 – y, x + 3xy – y, 3xy – 2z + x etc.

Like and Unlike terms: If the terms have same variable with same exponent then they are called Like terms, other wise they are called Unlike terms.

Ex: 2xy, 5yx, – 4xy are like terms

2xy, 5yz, 6zx are Unlike terms.

Addition of algebraic expressions:

 Ex:  Add 4x2 – 3xy + 2y2 and x2 + xy – 6y2

TS VIII maths Algebraic Expressions 1 

Subtraction of algebraic expressions: 
Ex:
 Subtract x2 – 2xy + 3y2 from 5x2 + 6xy – y2

TS VIII maths Algebraic Expressions 2

Multiplication of Algebraic expressions:

For finding the product of algebraic terms we add the power of same base variables.

1.Multiplying two monomials: –

Ex: 3 × x = x + x + x = 3x.

5x × 3y = (5 × 3) × (x × y) = 15 × xy = 15xy

5x × 3x = (5 × 3) × (x × x) = 15 × x2 = 15x2(5 × 3) × (x × y) = 15 × xy = 15xy

2.Multiplying three or more monomials: –

Ex: 3 × x × y= 3xy.

5x × 3y × 4z = (5 × 3 × 4) × (x × y × z) = 60 × xyz = 60xyz

3x2 × (– 4x) × 2x3 × 2 = (3 × – 4 × 2 × 2) × (x2 × x × x3) = – 48 x6 

3.Multiplying a binomial by a monomial: –

Ex: 5x (3x – 4y) = (5x × 3x) + (5x × – 4y) = 15x2 – 20xy      

4.Multiplying a Trinomial by a monomial: –

Ex: 5x (3x – 4y + 4z) = (5x × 3x) + (5x × – 4y) + (5x × 4z) = 15x2 – 20xy + 20 xz

5.Multiplying a Binomial by a Binomial: –

Ex: (x + y) (2x – 3y) = x (2x – 3y) + y (2x – 3y) = 2x2 – 6 xy + 2xy – 3 y2 = 2x2 – 4xy – 3y2

6.Multiplying a Binomial by a Trinomial: –

Ex: (x + y) (2x – 3y + z) = x (2x – 3y + z) + y (2x – 3y + z)

                                               = 2x2 – 6 xy + xz + 2xy – 3 y2 + yz

                                               = 2x2 – 4xy – 3y2 + xz + yz

Identity:  An equation is called an identity if it is satisfied by any value that replaces its variables. An equation is true for certain values for the variable in it, where as an identity is true for all its variables. There fore it is known as universally true equation.

Symbol for identity is denoted by ‘≡’ (read as identically equal to)

Some important identities:

  • (a +b)2 ≡ a2 + 2ab + b2
  • (a – b)2 ≡ a2 – 2ab + b2
  • (a + b) (a – b) ≡ a2 – b2
  • (a + b + c)2 ≡ a2 + b2 + c2 + 2ab + 2bc + 2ca
  • (x + a) (x + b) ≡ x2 + (a + b) x + ab.

Geometrical verification of (a +b)2 ≡ a2 + 2ab + b2

Consider a square with side a + b

TS VIII maths Algebraic Expressions 3

Area of square = (a + b)2

Procedure:

•Divide the square into four regions as shown in the figure.

•It consists of two squares with side ‘a’ and side ‘b’ respectively and two rectangles with length and breadth as ‘a’ and ‘b’ respectively.

•The area of given square is equal to sum of the areas of four regions.

⇒ Area of square = area of square with side a + area of square with side b + area of rectangle with sides a and b + area of the rectangle with sides and b

⇒ (a + b)2 = a2 + b2 + ab + ba

(a + b) 2 = a2 + 2ab + b2

∴ (a +b)2 ≡ a2 + 2ab + b2

Geometrical verification of (a – b)2 ≡ a2 – 2ab + b2

Consider the square with side ‘a’

TS VIII maths Algebraic Expressions 4

  The square is divided into four regions I, II, III and IV

 Area of square = area of region I + area of region II + area of region III + area of region IV

a2 = b (a – b) + b2 + b (a – b) + (a – b)2

a2 = ab – b2 + b2 + ab – b2 + (a – b)2

a2 = ab + ab – b2 + (a – b)2

⇒ (a – b)2 = a2 – ab – ab + b2

(a – b)2 = a2 – 2ab + b2

Geometrical verification of (a + b) (a – b) ≡ a2 – b2

Consider the square with side ‘a’

TS VIII maths Algebraic Expressions 5

Remove the square from this whose side is ‘b’ units, we get

TS VIII maths Algebraic Expressions 6

a2 – b2 = area of region I + area of region II

= a (a – b) + b (a – b)

= (a – b) (a + b)

∴ (a + b) (a – b) ≡ a2 – b2


12.FACFTORISATION

Factorisation:

The process of writing given expression as a product of its factors is called ‘Factorisation’.

It is helped to write the algebraic expressions in simpler form.

Irreducible factor:

A factor which can not be further expressed as product of factors is an irreducible factor.

Factorisation by Method of common factors:

Ex: Factorise 3x + 15

3x + 15 = (3 × x) + (3 ×5) (writing each term as the product of irreducible factors)

3 is the common factor of both terms

Take 3 as the common

3x + 15 = 3 × (x + 5) = 3 (x + 5)

Factorisation by grouping the terms:

Ex: Factorise ax + by + ay + bx

Firs group the like terms

ax + by + ay + bx = (ax + bx) + (ay + by)

= x (a + b) + y (a + b) (by taking out common factor from each term)

= (a + b) (x + y) (by taking out common factor from each term)

Factorisation by using identities:

  • (a +b)2 ≡ a2 + 2ab + b2
  • (a – b)2 ≡ a2 – 2ab + b2
  • (a + b) (a – b) ≡ a2 – b2 are the algebraic identities.

Example 1:

Factorise x2 + 4x + 4

Sol: x2 + 4x + 4 = x2 + 2 (2)(x) + (2)2

It is in the form of identity (a + b)2 = a2 + 2ab + b2

x2 + 4x + 4 = (x + 2)2 = (x + 2) (x + 2).

Example 2:

Factorise x2 – 4x + 4

Sol: x2 – 4x + 4= x2 –2 (2)(x) + (2)2

It is in the form of identity (a – b)2 = a2 – 2ab + b2

x2 + 4x + 4 = = x2 –2 (2)(x) + (2)2 =(x – 2)2 = (x – 2) (x –2).

Example 3:

Factorise 4x2 – 9y2

Sol: 4x2 – 9y2 = (2x)2 – (3y)2

It is in the form of identity (a – b) (a + b) = a2 – b2

4x2 – 9y2 = (2x)2 – (3y)2 = (2x – 3y) (2x + 3y).

Factors of the form (x + a) (x + b) = x2 + (a + b) x + ab:

Ex: x2 + 12x + 35

Here we have to find out factors 35 whose sum is 12

35 = 1 × 35               1 + 35 = 36

–1 × –35           –1 –35 = –36

7 × 5                 7 + 5 = 12

–7 × –5              –7 –5 = – 12

Now x2 + 12x + 35 = x2 + (7 + 5) x + 35

= x2 + 7x + 5x + 35

= x (x + 7) + 5 (x + 7)

= (x + 7) (x + 5)

Division of algebraic Expression:

1.Division of a monomial by another monomial:

Ex: 12x5 ÷ 3x

12x5 ÷ 3x =TS VIII maths Factorisation 1  = TS VIII maths Factorisation 2

= 4x4

2.Division of an expression by a monomial:

      Ex: 4x3 + 10 x2 + 8x ÷ 2x

             4x3 + 10 x2 + 8x = 2 × 2 × x × x × x + 2 × 5 × x × x + 2 × 2× 2 × x

= (2x) (2x2) + (2x) (5x) + (2x) (4)

= (2x) (2x3 + 5x + 4)

4x3 + 10 x2 + 8x ÷ 2x =TS VIII maths Factorisation 3

=TS VIII maths Factorisation 4

= 2x2 + 5x + 4

3.Division of an Expression by Expression:

Ex: (5x2 + 15x) ÷ (x + 3)

5x2 + 15x = 5x (x + 3)

(5x2 + 15x) ÷ (x + 3) = TS VIII maths Factorisation 5

= TS VIII maths Factorisation 6

= 5x


13.VISUALIZING 3-D IN 2-D

3D objects made with cubes:

TS VIII maths Visualising 3D in 2D 1

Various Geometrical Solids:

Some solids (3 – D objects) have flat faces and some solids have curved faces.

Polyhedron: 3 – D objects which have flat surfaces are called polyhedron.

Ex: book, dice, cube etc.

Non – Polyhedron: 3 – D objects which have curved faces are called Non – polyhedron.

Ex: ball, pipe etc.

Faces, Edges, and Vertices of 3D – objects:

TS VIII maths Visualising 3D in 2D 3 TS VIII maths Visualising 3D in 2D 2

Regular polyhedron:

The polyhedron, which has congruent faces, equal edges and vertices are formed by equal no. of edges is called regular polyhedron.

Ex: Cube, Tetrahedron.

Prism: The soiled object with two parallel and congruent polygonal faces and lateral faces as rectangles or parallelograms is called a prism.

TS VIII maths Visualising 3D in 2D 4

If the base of the prism is triangle, then it is called triangular prism.

If the base of the prism is square, then it is called square prism.

If the base of the prism is pentagon, then it is called pentagonal prism.

Euler’s Relation (Formula):

E + 2 = F + V

Where E = No. of edges;

F = No. of faces and

V = No. of vertices

Net diagrams:

A net is a short of skeleton – outline in 2 – D, which, when folded the net results in 3 – D shape.

Ex:

Tetrahedron

TS VIII maths Visualising 3D in 2D 5

 

Cube

TS VIII maths Visualising 3D in 2D 6

 


14.SURFACE AREAS AND VOLUMES

Cuboid:

TS VIII maths Surface areas and volumes 1

Lateral surface area (L.S.A) = 2h (l + b) square units.

Total surface area (T.S.A) = 2 (lb + bh + hl) square units.

Volume = lbh cubic units.

Cube:

TS VIII maths Surface areas and volumes 2

Lateral surface area (L.S.A) = 4 a2 square units.

Total surface area (T.S.A) = 6 a2 square units.

Volume = a3 cubic units.

TS VIII maths Surface areas and volumes 3

We measure volume of liquids in millilitres(ml) or litres(l)

1cm3 = 1 ml.

1000 cm3 = 1l.

1m3 = 1000000cm3 = 1000 l. = 1 kl. (kilo litre).


15.PLAYING WITH NUMBERS

Divisibility:

If a number ‘a’ divides another number ‘b’ completely, then ‘b’ is divisible by ‘a’.

Place value of digit:

TS VIII maths Playing with numbers 1

Place value of 7 is 7 000000.

Place value of 6 is 6000

Place value of 3 is 30

Divisibility Rules:

Divisibility rule by 2: –

If the unit place of a given number is 0, 2, 4, 6, 8 then that number is divisible by 2.

Ex: 10, 12, 526 etc.

Divisibility rule by 3: –

If the sum of the digits of a given number is divisible by 3, then that number is divisible by 3.

Ex: 234

Sum of the digits = 2 + 3 + 4 = 9

9 is divisible 3

∴ 234 is divisible by 3

Divisibility rule by 4: –

If the last two digits of a given number is divisible by 4, then that number is divisible by 4.

Ex: 324

24 is divisible by 4

∴ 324 is divisible by 4

∴ 324 is divisible by 4

Divisibility rule by 5: –

If the units place of given number is 0 or 5, then it is divisible by 5.

Ex: 10, 15, 235, 480 etc.

Divisibility rule by 6: –

If a number is divisible by both 3 and 2 then that number is divisible by 6.

Ex: 324

324 is divisible by both 3 and 2

∴ 324 is divisible by 6

Divisibility rule by 7: –

Fist multiply the last digit of given number by 2,

subtract this result from the number formed by remaining digits of given number.

If that result is divisible by 7, then the given number is divisible by 7.

Ex: 112

Last digit is 2 ⇒ 2 × 2 = 4

Now 11 – 4 = 7

7 is divisible by 7

∴ 112 is divisible by 7.

Divisibility by 8: –

 if the last three digits of a number is divisible by 8, then that number is divisible by 8.

Ex: – 4232, last three digits 232 are divisible by 8

∴ 4232 is divisible by 8.

Divisibility by 9: –

if the sum of the digits of a number is divisible by 9, then that number is divisible by 9.

Ex: – 459, 4 + 5 + 9 = 18 → 18 is divisible by 9       ∴ 459 is divisible by 9

532, 5 + 3 + 2 = 10 → 10 is not divisible by 9       ∴ 532 is not divisible by 9.

Divisibility by 10: –

a number is divisible by 10, if its once place is 0.

Ex: – 20 is divisible by 10. 22, 45 are not divisible by 10.

Divisibility by 11: –

 A number is divisible by 11, if the difference between the sum of the digits at odd places and the sum of the digits at even places is either 0 or 11.

Ex: – 6545

Sum of the digits at odd places = 5 + 5 = 10

Sum of the digits at even places = 4 + 6 = 10

Now difference is 10 – 10 = 0

∴ 6545 is divisible by 11.

 

 


Visit my Youtube Channel: Click on Below Logo

My Youtube channel Logo

TS IX CLASS MATHS CONCEPT FEATURE IMAGE

TS IX CLASS MATHS CONCEPT

TS IX CLASS MATHS CONCEPT 

Studying maths in IX class successfully means that children take responsibility for their own learning and learn to apply the concepts to solve problems.

This note is designed by the ‘Basics in Maths’ team. These notes to do help students fall in love with mathematics and overcome fear.


1.REAL NUMBERS

Rational numbers:-

  • The numbers which are written in the form ofTS IX Maths Rational numbers 1, where p, q are integers and q≠ 0 are called rational numbers. Rational numbers are denoted by Q.

ex:-  3/2, 3/5, 2, 1 and so on

  • Natural numbers, Whole numbers, and Integers are rational numbers.
  • The rational numbers do not have a unique representation.

  Representation of rational number:

      Represent    TS IX Maths Rational numbers 2

representing rational number

To find a rational number between given numbers:

 Mean method:- A rational number between two numbers a and b is TS IX Maths Rational numbers 3

  Ex:- insert two rational number between 1 and 2

TS IX Maths Rational numbers 4

To find a rational number in a single step:-

 Ex:- insert two rational number between 1 and 2

 To find two rational numbers, we 1 and 2 as rational numbers with same denominator 3     (∵ 1 + 2 = 3)

TS IX Maths Rational numbers 5

 

The decimal form of rational numbers:

terminating and non- terminating decimals

  • Note:- Every rational number can be expressed as a terminating decimal or non-terminating repeating decimal.
  • Converting decimal form into a fraction:
  1. Terminating decimals:-  (i) 1.2 = 12/10 = 6/5

                  (ii) 1.35 =135/100 = 135/100 = 27/20

  1. Non-Terminating repeating decimals:-

Irrational numbers:

  • The numbers which are not written in the form of, where p, q are integers and q ≠ 0 are called rational numbers. Rational numbers are denoted by QI or S.
  • Every irrational number can be expressed as a non-terminating decimal or non-repeating decimal.

Ex:- TS IX Maths Rational numbers 6

   Calculation of square roots:

  • There is a reference of irrationals in the calculation of square roots in Sulbha Sutra.
  • Procedure to find TS IX Maths Rational numbers 7  value:

square root 2

square root numbers value table

Representing irrational numbers on a number line:

          Ex:- Locate  TS IX Maths Rational numbers 7  on a number line

  • At ‘O’ draw a unit square OABC on a number line with each side 1 unit in length.
  • By Pythagoras theorem                          OB2 = OA2 + AB2

=  12 + 12

OB2 = 2

OB =TS IX Maths Rational numbers 7

  • Using a compass with centre O and radius OB, draw an arc on the right side to O intersecting the number line at the point
  • The location of TS IX Maths Rational numbers 7is now at k.

location of root 3

  • Note:-  If a and b are two positive rational numbers such that ab is not a perfect square, this an irrational number lies between a and b.   

Real numbers

  • The collection of all rational and irrational numbers is called real numbers.
  • Real numbers cover all the points on the number line.
  • Every real number is represented by a unique point on the number line.
  • Ex:- TS IX Maths Rational numbers 9  are some examples of real numbers.

Representing real numbers on the number line through successive magnifications:-

locating 2. 775 on a number line

visualising number line

Operation on real numbers

  • The sum, difference, product and quotient of irrational numbers need not be an irrational number.
  • Irrational numbers are not closed under addition, subtraction, multiplication, and division.
  • For any two real numbers a and b

properties of sq. roots

Rationalizing the denominator:

  • Rationalizing factor(R.F):-If the product of two irrational numbers is rational, then each of the two is the rationalizing factor to others.
  • The rationalizing factor of a given irrational number is not unique. It is convenient to use the simplest of all R.F.s of given irrational number.
  • Note:-

rationalising factor

Law of exponents for real numbers:

laws of exponents


2. POLYNOMIALS AND FACTORIZATION

Polynomial: An algebraic expression in which the variables involved have only whole number powers is called a polynomial.

Ex: x2 , x3 + 1, x2 + xy + y2  and so on.

Polynomials in one variable: The polynomials which are in the form of (a constant) × (some power of variable) are called polynomials in one variable.

    Ex: 2x, 4x, 3x2 + 1 and so on.

Degree of the polynomial: The degree of a term is the sum of the exponent of its variable factors. The degree of the polynomial is the highest power of its variable term.

Ex:  degree of 3x2 + 2x3 + 1 is 3

        degree of 5x2y3 + 2xy + 3x3 is 5

a polynomial in one variable x of degree n is anxn + an-1xn-1 + …+a1x + a0. Where a0, a1…an are constants and an ≠ 0.

Types of polynomials:

  1. According to no. of terms: –
No. of non-zero termsName of the polynomialExamplesTerms
1Monomial3x3x
2Binomial-2 x + 7-2x, 7
3Trinomial5x2 + 4x + 25x2, 4x, 2
More than 3Multinomial6x3 – 5x2 + 7x – 36x3, -5x2, x, -3

 According to a degree: –

Degree of the polynomialName of the polynomialExample
Not definedZero polynomial0
0Constant polynomial-12, 4, 7 etc.
1Linear polynomial2x+3, x – 3 etc.
2Quadratic polynomial2x2 + 3x + 1, x2 – 4 etc.
3Cubic polynomial3x3 – 4x2 + 2x + 6
4Bi quadratic polynomial4x4 + 2x3 + 45x2 +9x + 7

Zero of the polynomial: Let p(x) be a polynomial, if p(x) = 0 then, x is the zero of the polynomial p(x).

Ex: p(x) = 2x – 2

P(1) = 2(1) – 2 = 2 – 2 = 0

∴ 1 is the zero of the polynomial.

Zero of the linear polynomial in one variable:

Linear polynomialZero of the polynomial
x+ a      – a
x – aa
ax + b-b/a
ax – bb/a

 Dividing polynomials:

If p(x) is divided by g(x), then there exists quotient polynomial q(x) and remainder r(x) such that

p(x) = q(x) × g(x) + r(x)

this is called division algorithm for polynomials.

Remainder theorem: 

Let p(x) be a polynomial of degree greater than or equal to one and let a be any real number. If p(x) is divided by the linear polynomial (x – a), then the remainder is p(a).

Ex: if p(x) = 3x2 – 4 x + 2 is divided by the polynomial (x – 1), then find remainder.

Ans: Given p(x) = 3x2 – 4 x + 2

Remainder is p (1)

⇒ p (1) = 3(1)2 – 4 (1) + 2 = 3 – 4 + 2 = 5 – 4 = 1

∴ remainder is 1.

Factor theorem:

If p(x) s a polynomial of degree greater than or equal to one and a is any real number, then x – a is a factor of p(x), if p(a) = 0  and its converse if (x – a) is a factor of p(x), then p(a) = 0.

Ex:  if p(x) = x2 – 2x + 1, then show that (x – 1) is a factor of p(x)

Ans: given   polynomial is p(x) = x2 – 2x + 1

            P (1) = (1)2 – 2(1) + 1 = 1 – 2 + 1 = 2 – 2 = 0

∴ x – 1is the factor of x2 – 2x + 1.

Algebraic identities:

(i ) (x + y)2 ≡ x2 + 2xy + y2         (ii) (x − y)2≡x2 − 2xy + y2        (iii) (x + y)(x – y)≡x2 – y2

(iv) (x + a) (x + b) ≡ x2 + (a + b) x + ab   (v) (x + y + z)2 ≡ x2 + y2 + z2 + 2xy + 2yz + 2zx

(v) (x +y)3 ≡ x3 + 3x2y + 3xy2 + y3 ≡ x3 + y3 + 3xy (x + y)

(vi) (x − y)3 ≡ x3 − 3x2y + 3xy2 + y3 ≡ x3 − y3 + 3xy (x − y)

(vii)  (x + y + z)(x2+ y2 + z2 – xy – yz – zx) ≡ x3 + y3 + z3 – 3xyz.


3.THE ELEMENTS OF GEOMETRY

Geometry: The word geometry derived from the Greek word ‘geo’ means earth and ‘metron’ means measure.

Euclid’s Elements:  Euclid wrote 13 books called ‘The Elements’. Euclid creates the first system of thought based on fundamental definitions, axioms, propositions rules of inference or logic.

Some definitions of Euclid’s 1st book of Elements are: (i) A ‘point’ is that that which has no part. (ii) A ‘line’ is the breathless length. (iii) The ends of a line are points. (iv) A straight line is a line which lies evenly with the points itself.  (v) A ‘surface’ is that which has length and breadth only. (vi) The edge of the surface are lines. (vii) A plane surface is a surface which lies evenly with the straight lines on itself.

Note:  In geometry, a point, a line and a plane are undefined terms.

 Axioms: Axioms are statements that are self-evident or assumed to be true within the context of a particular mathematical system. Axioms are elf evident facts and do not require any proof.

Some of Euclid’s Axioms are:

  1. Things which are equal to the same things are equal to another.
  2. If equals are added to equals, the wholes are equal.
  3. If equals are subtracted from equals, the remainders are also equal.
  4. Things which coincide with one another are equal.
  5. Things which are double of the same things are equal.
  6. Things that are halves of the same things are equal.

Postulates: Postulates are used for the assumptions made in the geometry.

Euclid’s five postulates:

Postulate – 1: There is a unique line that passes through the given two distinct points.

s ix maths Euclids postulate1

Postulate – 2: A-line segment can be extended on either side to form a straight line.

ts ix maths Euclids postulate-2

Postulate –3: We can escribe a circle with any centre and any radius.

ts ix maths Eclids postulate 3
Postulate – 4: All right angles are equal.

TS IX MATHS EUCLIDS POSTULATE 4

Postulate – 5: If a straight line falling on two straight line makes the interior angles on the same side of it taken together is less than two right angles, then two straight lines, if produced infinitely, meet on that side on which the sum of the angles is less than two right angles.

ts ix maths Euclids postulate 5
Equivalent versions of Euclid’s fifth postulate:

From the fig. sum of the angles, x and y is less than 1800

  1. Through a point not on a given line, exactly one parallel line may be drawn o the given line (John Playfair).
  2. The sum of the angles of any triangle is constant and is equal to two right angles (Legendre).
  3. If a straight line intersects any one of two parallel lines, then it will intersect others also (Proclus).
  4. Straight lines parallel to the same straight line are parallel to one another (Proclus).

Conjecture or Hypothesis: The statements which are neither proved nor disproved are called conjectures.


4. LINES AND ANGLES
Line:
Line can be extended in both directions endlessly.

ts ix math line AB

Ray:  It is a part of the line. It begins at a point and goes on endlessly in a specific direction.

ts ix math rayAB

Line segment: A part of the line with two endpoints is called a line segment.                                   

ts ix maths line segment AB     

Collinear points: If three or more points lie on the same line, then they are called collinear points.
A B and C are collinear points 

ts ix maths collinear points

Note: if ‘n’ points lie on a line, then no. of line segments = ts ix math no. of linesegments formula

Angle:  An angle is formed when two rays originate from the same point. The rays making an angle are called ‘Arms’ of the angle. The common point is called ‘vertex’.

ts IX maths angle

 Intersecting and Non-intersecting lines:  If two lines meet at any point, then the lines are intersecting lines. If two lines never meet at any point are called non-intersecting lines or parallel lines.

ts ix maths intersecting and parallel lines                                                                                                               

Concurrent lines: If two or more lines meet at the point, then that lines are called concurrent lines.
ts ix maths concurrent lines
Complementary angles:  Two angles are said to be complementary angles if their um is 900.

ts ix maths complementary angles

The complementary angle of x0 is 900 – x0.

Supplementary angles:  Two angles are said to be supplementary angles if their um is 1800.

 

ts ix maths supplimentary angles

the supplementary