భారతీయ గణిత శాస్త్రజ్ఞులు

భారతీయ గణిత శాస్త్రజ్ఞులు

భారతీయ గణిత శాస్త్రజ్ఞులు

భారతీయ గణిత శాస్త్రజ్ఞులు

భారతీయ గణిత శాస్త్రజ్ఞులు ప్రాచీన కాలం నుండి నేటి వరకు గణిత రంగానికి అద్భుతమైన కృషి చేశారు. ఆర్యభట్ట, బ్రహ్మగుప్త, భాస్కర II, సంగమగ్రామానికి చెందిన మాధవ, నీలకంఠ సోమయాజి, శ్రీనివాస రామానుజన్ మరియు వరాహమిహిర వంటి ప్రసిద్ధ పేర్లలో కొన్ని ఉన్నాయి. ఆర్యభట్ట ఖగోళ శాస్త్రజ్ఞుడు మరియు గణిత శాస్త్రజ్ఞుడు, అతను సున్నా అనే భావనను కనుగొన్నాడని నమ్ముతారు. బ్రహ్మగుప్తుడు సరళ మరియు వర్గ సమీకరణాల సంఖ్యాపరమైన పరిష్కారాలపై చేసిన కృషికి ప్రసిద్ధి చెందాడు. భాస్కర II 12వ శతాబ్దానికి చెందిన గణిత శాస్త్రజ్ఞుడు, అతను గణితం, ఖగోళ శాస్త్రం మరియు జ్యోతిషశాస్త్రంపై అనేక పుస్తకాలు రాశాడు. సంగమగ్రామానికి చెందిన మాధవ అనంత శ్రేణిలో చేసిన కృషికి ప్రసిద్ధి చెందారు. నీలకంఠ సోమయాజి కాలిక్యులస్‌పై చేసిన కృషికి ప్రసిద్ధి చెందారు. శ్రీనివాస రామానుజన్ అన్ని కాలాలలో గొప్ప గణిత శాస్త్రజ్ఞులలో ఒకరిగా విస్తృతంగా పరిగణించబడతారు మరియు సంఖ్య సిద్ధాంతం మరియు గణిత విశ్లేషణపై చేసిన కృషికి ప్రసిద్ధి చెందారు. వరాహమిహిర ఖగోళ శాస్త్రం మరియు గణిత శాస్త్రంలో చేసిన కృషికి ప్రసిద్ధి చెందాడు. ఈ గణిత శాస్త్రజ్ఞులందరూ గణిత రంగానికి గణనీయమైన కృషి చేసారు మరియు వారి పని నేటికీ ఆధునిక గణితాన్ని ప్రభావితం చేస్తుంది.

భారతీయ గణిత శాస్త్రజ్ఞులు

 

ఇక్కడ కొన్ని ప్రముఖ భారతీయ గణిత శాస్త్రజ్ఞుల జాబితా ఉంది:

  1. ఆర్యభట్ట (జననం 476 CE)
  2. బ్రహ్మగుప్త (జననం CE 598)
  3. భాస్కర II (జననం 1114 CE)
  4. సంగమగ్రామానికి చెందిన మాధవ (జననం 1350 CE)
  5. నీలకంఠ సోమయాజి (జననం 1444 CE)
  6. శ్రీనివాస రామానుజన్ (జననం 1887 CE)
  7. సుబ్రహ్మణ్యన్ చంద్రశేఖర్ (జననం 1910 CE)
  8. డి.ఆర్. కప్రేకర్ (జననం 1905 CE)
  9. C.R. రావు (జననం 1920 CE)
  10. వశిష్ఠ నారాయణ్ సింగ్ (జననం 1942 CE)

1.ఆర్యభట్ట (జననం 476 CE)

ఆర్యభట (జననం 476 CE) భారతీయ గణిత శాస్త్రజ్ఞుడు, ఖగోళ శాస్త్రవేత్త మరియు జ్యోతిష్కుడు, అతను భారతీయ గణిత శాస్త్రం మరియు ఖగోళశాస్త్రం యొక్క శాస్త్రీయ యుగంలో అభివృద్ధి చెందాడు. స్థల-విలువ వ్యవస్థను అభివృద్ధి చేయడం, సున్నా సంఖ్యను ప్రవేశపెట్టడం మరియు పై విలువను లెక్కించడం వంటి అంశాలతో సహా గణిత శాస్త్ర రంగానికి ఆయన చేసిన కృషికి అతను బాగా పేరు పొందాడు. అతను ఖగోళ శాస్త్రం మరియు జ్యోతిషశాస్త్ర రంగాలకు కూడా ముఖ్యమైన కృషి చేసాడు. ఆర్యభట్టియ మరియు ఆర్య-సిద్ధాంత వంటి అతని రచనలు ఆయా రంగాలలో కళాఖండాలుగా పరిగణించబడతాయి. అతని పని భారతదేశం మరియు వెలుపల గణితం మరియు ఖగోళ శాస్త్రం అభివృద్ధిపై ప్రధాన ప్రభావాన్ని చూపింది.

2.బ్రహ్మగుప్త (జననం 598)

బ్రహ్మగుప్తుడు 7వ శతాబ్దం CEలో నివసించిన భారతీయ గణిత శాస్త్రజ్ఞుడు మరియు ఖగోళ శాస్త్రవేత్త. రెండు చతురస్రాల మొత్తానికి సంబంధించిన గణితంలో ముఖ్యమైన ఫలితం అయిన బ్రహ్మగుప్త సిద్ధాంతంపై చేసిన పనికి అతను బాగా పేరు పొందాడు. అతను అనేక ముఖ్యమైన ఖగోళ శాస్త్ర రచనలను కూడా రాశాడు, ఇవి ఈ కాలం నుండి భారతీయ ఖగోళ శాస్త్రం గురించి మనకు చాలా జ్ఞానానికి మూలం. గణితంలో సున్నా మరియు ప్రతికూల సంఖ్యల వినియోగాన్ని ప్రవేశపెట్టిన ఘనత ఆయనదే.

3.భాస్కర II (జననం 1114 CE)

భాస్కర II 12వ శతాబ్దం CEలో నివసించిన భారతీయ గణిత శాస్త్రజ్ఞుడు మరియు ఖగోళ శాస్త్రవేత్త. అతను కాలిక్యులస్‌పై చేసిన పనికి మరియు ఆర్యభట్ట రచనలపై అతని వ్యాఖ్యానాలకు ప్రసిద్ధి చెందాడు. అవకలన కాలిక్యులస్ సూత్రాలను మరియు ఉత్పన్నం యొక్క భావనను కనుగొన్న ఘనత ఆయనది. అతను అనేక గణిత మరియు ఖగోళ గణనలను కలిగి ఉన్న సిద్ధాంత శిరోమణి అనే పేరుతో ఖగోళ శాస్త్రంపై ఒక గ్రంథాన్ని కూడా రాశాడు. భాస్కర II యొక్క రచనలు భారతదేశంలో మరియు ప్రపంచవ్యాప్తంగా గణితం మరియు ఖగోళ శాస్త్రం అభివృద్ధిలో ప్రభావం చూపాయి.

4. సంగమగ్రామానికి చెందిన మాధవ (జననం 1350 CE)

సంగమగ్రామానికి చెందిన మాధవ (జననం 1350 CE) అన్ని కాలాలలో అత్యంత ప్రభావవంతమైన గణిత శాస్త్రజ్ఞులలో ఒకరిగా విస్తృతంగా పరిగణించబడుతుంది. పై కోసం అనంత శ్రేణి మరియు త్రికోణమితి ఫంక్షన్ల కోసం పవర్ సిరీస్ విస్తరణతో సహా అనేక ముఖ్యమైన గణిత సిద్ధాంతాలను కనుగొన్న ఘనత ఆయనది. అతను ఏకీకరణ మరియు అవకలన సమీకరణాల యొక్క అనేక పద్ధతులను కూడా అభివృద్ధి చేశాడు. భారతదేశంలోని మొదటి గణిత పాఠశాలలలో ఒకటైన కేరళ స్కూల్ ఆఫ్ మ్యాథమెటిక్స్ స్థాపకుడిగా ఆయన ఈ రోజు జ్ఞాపకం చేసుకున్నారు. ఆధునిక గణితశాస్త్రం అభివృద్ధిలో అతని పని ప్రధాన పాత్ర పోషించింది మరియు అతను తరచుగా “మధ్యయుగ భారతదేశం యొక్క గొప్ప గణిత శాస్త్రజ్ఞుడు” గా సూచించబడ్డాడు.

5.నీలకంఠ సోమయాజి (జననం 1444 CE)

నీలకంఠ సోమయాజి 1444 CEలో జన్మించిన భారతీయ గణిత శాస్త్రజ్ఞుడు, ఖగోళ శాస్త్రవేత్త మరియు జ్యోతిష్కుడు. అతను హిందూ క్యాలెండర్ యొక్క ఖగోళ గణనలపై చేసిన కృషికి ప్రసిద్ధి చెందాడు మరియు కోపర్నికన్ మోడల్‌కు సమానమైన విశ్వం యొక్క సూర్యకేంద్రక నమూనాను ప్రతిపాదించిన ఘనత కూడా అతనికి ఉంది. అతను కేరళ స్కూల్ ఆఫ్ ఖగోళ శాస్త్రం మరియు గణిత శాస్త్రాన్ని అభివృద్ధి చేయడంలో ప్రధాన వ్యక్తి. అతను ప్రసిద్ధ ఆర్యభట్యభాష్యంతో సహా అనేక గ్రంథాలను రచించాడు, ఇది గణితశాస్త్రం మరియు ఖగోళ శాస్త్రంపై ఆర్యభట్ట యొక్క ప్రసిద్ధ రచన యొక్క విస్తరించిన సంస్కరణ. ఖగోళ శాస్త్రం మరియు గణిత శాస్త్రానికి నీలకంఠ సోమయాజి చేసిన కృషి నేటికీ అధ్యయనం చేయబడుతోంది మరియు అతని రచనలు ఇప్పటికీ ఆధునిక పరిశోధనలకు రిఫరెన్స్ పాయింట్‌లుగా ఉపయోగించబడుతున్నాయి.

6. శ్రీనివాస రామానుజన్ (జననం 1887 CE)

శ్రీనివాస రామానుజన్ చరిత్రలో గొప్ప గణిత శాస్త్రజ్ఞులలో ఒకరిగా గుర్తుంచుకుంటారు. భారతదేశంలోని మద్రాసులో 1887 CEలో జన్మించిన రామానుజన్ ఎక్కువగా స్వీయ-బోధన కలిగి ఉన్నాడు మరియు అధికారిక విశ్వవిద్యాలయ విద్యను కలిగి ఉండడు. అతను గణనీయమైన సహకారం అందించాడు

గణిత విశ్లేషణ, సంఖ్య సిద్ధాంతం, అనంత శ్రేణి మరియు నిరంతర భిన్నాలు. రామానుజన్ రచనలు ఆధునిక గణితశాస్త్రంపై తీవ్ర ప్రభావాన్ని చూపాయి మరియు తరతరాలుగా గణిత శాస్త్రజ్ఞులకు ప్రేరణగా నిలిచాయి. అతని ఆవిష్కరణలు మరియు రచనలు పూర్తిగా కొత్త అధ్యయన రంగాలను తెరిచాయి మరియు అతని వారసత్వం రాబోయే సంవత్సరాల్లో అనుభూతి చెందుతూనే ఉంటుంది.

7. సుబ్రహ్మణ్యన్ చంద్రశేఖర్ (జననం 1910 CE)

సుబ్రహ్మణ్యన్ చంద్రశేఖర్ 1910లో జన్మించిన భారతీయ-అమెరికన్ ఖగోళ భౌతిక శాస్త్రవేత్త మరియు నోబెల్ గ్రహీత. అతను నక్షత్రాల పరిణామం, బ్లాక్ హోల్స్ మరియు నక్షత్రాల భౌతిక ప్రక్రియల అవగాహనకు ప్రాథమిక సహకారం అందించాడు. తెల్ల మరగుజ్జు నక్షత్రం యొక్క గరిష్ట ద్రవ్యరాశిని తెలిపే చంద్రశేఖర్ పరిమితి అని ఇప్పుడు పిలువబడే దాని ఉనికిని సూచించిన మొదటి వ్యక్తి. నక్షత్రాల నిర్మాణం మరియు పరిణామంపై చేసిన కృషికి గాను 1983లో భౌతిక శాస్త్రంలో నోబెల్ బహుమతిని అందుకున్న మొదటి ఖగోళ భౌతిక శాస్త్రవేత్త. అతను 20వ శతాబ్దపు అత్యంత ప్రభావవంతమైన ఖగోళ శాస్త్రవేత్తలలో ఒకరిగా పరిగణించబడ్డాడు మరియు ఆధునిక ఖగోళ భౌతిక శాస్త్రంలో అతని సంచలనాత్మక పరిశోధన అధ్యయనం మరియు అన్వయించడం కొనసాగుతోంది.

8.డి.ఆర్. కప్రేకర్ (జననం 1905 CE)

డి.ఆర్. కప్రేకర్ 1905 CEలో జన్మించిన భారతీయ గణిత శాస్త్రజ్ఞుడు మరియు వినోద కంప్యూటర్ శాస్త్రవేత్త. అతను కప్రేకర్ యొక్క స్థిరాంకాన్ని కనిపెట్టడంలో ప్రసిద్ధి చెందాడు, ఇది 6174 ద్వారా ప్రాతినిధ్యం వహిస్తుంది. అతను కప్రేకర్ యొక్క కార్యకలాపాలను కూడా కనుగొన్నాడు, ఇవి ఏ సంఖ్యనైనా మార్చడానికి మరియు కప్రేకర్ యొక్క స్థిరాంకాన్ని ఉత్పత్తి చేయడానికి ఉపయోగించే దశల శ్రేణి. అతని పని క్రిప్టోగ్రఫీ మరియు నంబర్ థియరీ వంటి వివిధ రంగాలలో ఉపయోగించబడింది. అతను ఆసక్తిగల వంతెన ఆటగాడు, మరియు ఈ అంశంపై అనేక పుస్తకాలు రాశాడు. కప్రేకర్ వారసత్వం ఈనాటికీ కొనసాగుతోంది మరియు అతని పని గణిత రంగంలో శాశ్వత ప్రభావాన్ని చూపింది.

9.C.R. రావు (జననం 1920 CE)

C.R. రావు (జననం 1920 CE) ఒక భారతీయ-అమెరికన్ గణిత శాస్త్రజ్ఞుడు, గణాంకవేత్త మరియు ప్రొఫెసర్. అతను స్టాటిస్టిక్స్ రంగంలో అగ్రగామి నిపుణులలో ఒకరిగా పరిగణించబడ్డాడు, అంచనా సిద్ధాంతం, మల్టీవియారిట్ విశ్లేషణ మరియు అవకలన జ్యామితి రంగాలకు ప్రధాన కృషి చేశాడు. రావు లీనియర్ స్టాటిస్టికల్ ఇన్ఫెరెన్స్ మరియు ఇట్స్ అప్లికేషన్స్ అండ్ స్టాటిస్టిక్స్ అండ్ ట్రూత్‌తో సహా అనేక పుస్తకాలను కూడా రచించారు. అతను సాంఖ్య జర్నల్‌కు వ్యవస్థాపక సంపాదకుడు మరియు పెన్ స్టేట్ యూనివర్శిటీలో G.S. మద్దాల చైర్ మరియు పిట్స్‌బర్గ్ విశ్వవిద్యాలయంలో స్టాటిస్టిక్స్ విభాగానికి చైర్‌తో సహా అనేక విద్యాపరమైన పదవులను నిర్వహించారు. గణాంక రంగానికి చేసిన కృషికి గాను రావుకు 2002లో నేషనల్ మెడల్ ఆఫ్ సైన్స్ మరియు 2001లో పద్మభూషణ్ లభించాయి.

10.వశిష్ఠ నారాయణ్ సింగ్ (జననం 1942 CE)

వశిష్ఠ నారాయణ్ సింగ్ (జననం 1942 CE) ఒక భారతీయ గణిత శాస్త్రజ్ఞుడు, ఆర్థికవేత్త మరియు సామాజిక కార్యకర్త. అతను గణిత ఆర్థిక శాస్త్ర రంగంలో తన మార్గదర్శక కృషికి, అణగారిన వర్గాల హక్కుల కోసం అలుపెరగని పోరాటానికి మరియు సామాజిక న్యాయం కోసం జీవితకాల నిబద్ధతకు ప్రసిద్ధి చెందాడు. అతను అనేక పుస్తకాలను రచించాడు మరియు భారతదేశంలోని అనేక విశ్వవిద్యాలయాలలో ప్రొఫెసర్‌గా పనిచేశాడు. అంతర్జాతీయంగా పలు విశ్వవిద్యాలయాల్లో విజిటింగ్ ప్రొఫెసర్‌గా కూడా సేవలందించారు. అతను అనేక విశ్వవిద్యాలయాలలో అనేక గౌరవ పదవులను నిర్వహించాడు మరియు జాతీయంగా మరియు అంతర్జాతీయంగా అనేక అవార్డులతో సత్కరించబడ్డాడు. గణితం, ఆర్థిక శాస్త్రం మరియు సామాజిక న్యాయ రంగానికి ఆయన చేసిన కృషి ఎనలేనిది మరియు ఎందరికో స్ఫూర్తిదాయకంగా కొనసాగుతోంది.


Visit my Youtube Channel: Click on Below Logo

AS_Tutorioal_Png

Mathematical Indunction

Ch. 2 Mathematical Indunction Exerxise Solutions

Mathematical Indunction (M.I) Exerxise wise Solutions

Mathematical Indunction: It is a technique for proving results or establishing statements for natural numbers. This part illustrates the method through a variety of examples.

Definition:
Mathematical Induction  is a mathematical technique which is used to prove a statement, a formula or a theorem is true for every natural number.

The technique involves steps to prove a statement, as stated below −
Let P(n) or S(n) be the given statement

Step 1: For n =1
                 we get LHS = RHS
                 then P(n) is true for n= 1
Step 2: Let us assume thet P(n) is true for n =k
Step 3: We have to Prove P(n) is true for n= k + 1

Laplace:

Laplace was a mathematecian and astronomer whose work was pivotal to the development of mathematical astronomy. His most outstanding work was done in the fields of celestial mechonics, probability, differential equations, and geodesy. His five volume work on celestial mechonics earned him the title of the Newton of France.

Laplace

“Analysis and natural philosophy owe their most important discoveries to this fruitful means, which is called indunction” – Pierr Simon de Laplace


Exercise 2(a)

Using Mathematical Indunction, Prove each of the following statement for all n ∈ N.

1. 12 + 22 + 32 + …… + n2= Mathematical Induction 1

Let p(n) be the given statement that

 12 + 22 + 32 + …… + n2=Mathematical Induction 1

For n= 1

LHS = 12 = 1

RHS = Mathematical Induction 20=Mathematical Induction 21  = 1

LHS = RHS

P(n) is true for n = 1

Let us assume that P(n) is true for n = k

i.e., 12 + 22 + 32 + …… + k2=  ………… (1)

for n = k + 1

add (k +1)2 on both sides of (1)

12 + 22 + 32 + …… + k2 + (k +1)2 =Mathematical Induction 4 

                                                              Mathematical Induction 5   

                                                             Mathematical Induction 6

P(n) is true for n = k+ 1

∴ By the principle of  M.I.  P(n) is true for all n ∈ N

∴ 12 + 22 + 32 + …… + n2=Mathematical Induction 1

2.  2.3 + 3.4 + 4.5 + ……… up to n terms = Mathematical Induction 7

First factors of given series are: 2, 3, 4, 5, …

                                  a = 2, d = 1

                                 an = a + (n – 1) d

                                       = 2 + (n – 1) (1)

                                       = 2 + n – 1

                                       = n + 1

Second factors of given series are: 3, 4, 5,…

                                  a = 3, d = 1

                                 an = 3 + (n – 1) d

                                       = 3 + (n – 1) (1)

                                       = 3 + n – 1

                                       = n + 2

nth term of given series is (n + 1) (n + 2)

let P(n) be the given statement that

2.3 + 3.4 + 4.5 + ……… + (n + 1) (n + 2) = Mathematical Induction 7

For n = 1

LHS = 2.3 = 6

RHS =  =  =  = 6

LHS = RHS

P(n) is true for n = 1

Let us assume that P(n) is true for n = k

i.e., 2.3 + 3.4 + 4.5 + ……… + (k + 1) (k + 2) = Mathematical Induction 8 ………… (1)

for n = k + 1

  add (k + 2) (k + 3) on both sides of (1)

 2.3 + 3.4 + 4.5 + ……… + (k + 1) (k + 2) + (k + 2) (k + 3)  

  =  Mathematical Induction 8 + (k + 2) (k + 3)

Mathematical Induction 9

Mathematical Induction 10

Mathematical Induction 11

P(n) is true for n = k+ 1

∴ By the principle of  M.I. 

   P(n) is true for all n ∈ N

∴ 2.3 + 3.4 + 4.5 + ……… up to n terms =Mathematical Induction 7

3 . Mathematical Induction 12

Sol:

let P(n) be the given statement that

Mathematical Induction 12

       For n = 1

        LHS = Mathematical Induction 13 =Mathematical Induction 14

        RHS =Mathematical Induction 15  =Mathematical Induction 16  = Mathematical Induction 14

       LHS = RHS

       P (n) is true for n = 1

Let us assume that P(n) is true for n = k

Mathematical Induction 17  ………… (1)

For n = k + 1

Add Mathematical Induction 22on both sides of (1)

Mathematical Induction 18 

                                                                                                                             Mathematical Induction 11

P (n) is true for n = k + 1

∴ By the principle of M.I.   P(n) is true for all n ∈ N

∴   Mathematical Induction 12

 

4. 43 + 83 + 123 + … up to n terms = 16 n2 (n + 1)2

Sol:

let P(n) be the given statement that

 4, 8, 12, … are in AP

a = 4, d = 4

an = a + (n – 1) d

     = 4 + (n – 1)4

     = 4 + 4n – 4

      = 4n

nth term of given series is (4n)3

let P(n) be the given statement that

43 + 83 + 123 + … + (4n)3= 16 n2 (n + 1)2

       For n = 1

        LHS = 43 = 63

        RHS = 16 (1)2 (1 + 1)2 = 16 × 4 = 64

       LHS = RHS

       P (n) is true for n = 1

      Let us assume that P(n) is true for n = k

43 + 83 + 123 + … + (4k)3= 16 k2 (k + 1)2 ………… (1)

      For n = k + 1

     Add [4 (k + 1)]3 on both sides of (1)

    43 + 83 + 123 + … + (4k)3= 16 k2 (k + 1)2 + [4 (k + 1)]3

                                                      = 16 k2 (k + 1)2 + 64 (k + 1)3

                                                      = 16 (k + 1)2 [k2 + 4 (k + 1)]

                                                      = 16 (k + 1)2 [k2 + 4 k + 4]

                                                      = 16 (k + 1)2 (k + 2)2

                                                      = 16 (k + 1)2 ( Mathematical Induction 23+ 1)2

P (n) is true for n = k + 1

∴ By the principle of Mathematical induction

   P(n) is true for all n ∈ N

5. a + (a + d) + (a + 2d) + …. up to n terms = Mathematical Induction 24

Sol:

Given series is a + (a + d) + (a + 2d) + …. up to n terms = Mathematical Induction 24

nth term of the given series is a + (n – 1) d

     let P(n) be the given statement that

      a + (a + d) + (a + 2d) + …. +[a + (n – 1) d] = Mathematical Induction 24

     for n = 1

     LHS = a;     RHS = Mathematical Induction 25 = a

     LHS = RHS

     P(n) is true for n = 1

     Let us assume that p(n) is true for n = k

   a + (a + d) + (a + 2d) + …. + [a + (k – 1) d] = Mathematical Induction 26……. (1)

   add (a + k d) on both sides of (1)

    a + (a + d) + (a + 2d) + …. [a + (k – 1) d] + [a + kd] = Mathematical Induction 26 + [a + kd]

 

             Mathematical Induction 28

P (n) is true for n = k + 1

∴ By the principle of Mathematical induction

   P(n) is true for all n ∈ N

Mathematical Induction

 


Visit my Youtube Channel: Click on Below Logo

AS_Tutorioal_Png

Functions Exercise 1c

Functions Exercise 1c Solutions ||TS|| Basics In MAths

Functions Exercise 1c Solutions 

Functions Exercise 1c

The famous mathematician ” Lejeune Dirichlet”  defined a function.

Function: A variable is a symbol which represents any one of a set of numbers, if two variables x and y so related that whenever a value is assigned to x there is autometically assigned by some rule or correspondence a value to y, then we say y is a function of x.

Chapter 1 Functions Exercise 1c Solutions for inter first year  students, prepared by Mathematics expert of www.basicsinmaths.com

Functions Exercise 1c

 

I.

1.Find the domains of the following real valued functions

 

(i)

f (x) =Functions 1(c) images 1

given function is f (x) =Functions 1(c) images 1

 f (x) is defined when (x2 – 1) (x + 3) ≠ 0

  ⟹ (x2 – 1) ≠ 0 or (x + 3) ≠ 0

  ⟹ (x + 1) (x – 1) ≠ 0 or (x + 3) ≠ 0

  ⟹ x ≠ 1, x ≠ – 1 or x ≠ – 3

∴ Domain of f(x) is R – {– 1, – 3, 1}

(ii)

f (x) = Functions 1(c) images 2

 Given function is f (x) = Functions 1(c) images 2

 f (x) is defined when (x – 1) (x – 2) (x – 3) ≠ 0    

  ⟹ x ≠ 1, x ≠ 2 or x ≠ 3

∴ Domain of f(x) is R – {1, 2, 3}

(iii)

f (x) = Functions 1(c) images 3

Given function is f (x) = Functions 1(c) images 3

f (x) is defined when 2 – x > 0 and 2 – x ≠ 1                        

  ⟹ 2 > x  and  2 – 1 ≠ x                        

⟹ 2 > x  and  x ≠ 1                        

∴ Domain of f(x) is (– ∞, 2) – {1}

(iv)

f (x) = Functions 1(c) images 4

Given function is f (x) = Functions 1(c) images 4

f (x) is defined when x ∈ R      

∴ Domain of f(x) is R

Functions Exercise 1c

(v)

f (x) =Functions 1(c) images 5

Given function is f (x) = Functions 1(c) images 5

f (x) is defined when 4x – x2 ≥ 0      

⟹ x (4 – x) ≥ 0

⟹ x (x – 4) ≤ 0

⟹ (x – 0) (x – 4) ≤ 0

⟹ x ∈ [0, 4]

∴ Domain of f(x) is [0, 4]

(vi) 

f (x) =Functions 1(c) images 6

 Given function is f (x) =Functions 1(c) images 6

 f (x) is defined when 1 – x2 > 0   

 ⟹ x2 – 1 < 0

⟹ (x – 1) (x + 1) < 0

⟹ x ∈ (– 1, 1)

∴ Domain of f(x) is (– 1, 1)

(vii)

f (x) =Functions 1(c) images 7

 Given function is f (x) = Functions 1(c) images 7

  f (x) is defined when x + 1≠ 0   

  ⟹ x ≠ – 1  

  ∴ Domain of f(x) is R – {– 1}

(viii)

f(x) =Functions 1(c) images 8

  Given function is f (x) =Functions 1(c) images 8

  f (x) is defined when x2 – 25 ≥ 0   

  ⟹ (x – 5) (x + 5) ≥ 0  

  ⟹ x ∈ (–∞, –5] ∪ [5, ∞)

 Functions 1(c) images 11

  ⟹ x ∈ R – (– 5, 5)

 ∴ Domain of f(x) is R – (– 5, 5)

Functions Exercise 1c

(ix)

f(x) = Functions 1(c) images 12

Given function is f (x) = Functions 1(c) images 12

f (x) is defined when x – [x] ≥ 0   

  ⟹ x ≥ [x]

 ⟹ x ∈ R   

∴ Domain of f(x) is R  

(x)

f(x) =Functions 1(c) images 13

Given function is f (x) =Functions 1(c) images 13

f (x) is defined when [x] – x ≥ 0   

  ⟹ [x] ≥ x

 ⟹ x ∈ Z   

∴ Domain of f(x) is Z

Functions Exercise 1c

2. find the ranges of the following real valued functions

 

(i)

f(x) =Functions 1(c) images 14

Given function is f (x) = Functions 1(c) images 14

Let y = Functions 1(c) images 14

  ⟹  |4 – x2| = ey

∵ ey > 0 ∀ y ∈ R

∴ Range of f(x) is R

(ii) 

f(x) =Functions 1(c) images 13

Given function is f (x) =Functions 1(c) images 13

f (x) is defined when [x] – x ≥ 0   

  ⟹ [x] ≥ x

 ⟹ x ∈ Z   

Domain of f(x) is Z

Range of f = {0}

(iii) 

f(x) =Functions 1(c) images 15

Given function is f (x) =Functions 1(c) images 15

f (x) is defined when x ∈ R   

             Domain of f(x) is R

           For x ∈ R   [x] is an integer

           Since sin nπ = 0, ∀ n ∈ z

            ⟹ sin π[x] = 0

          ∴ Range of f = {0}

(iv) 

f (x) =Functions 1(c) images 16

           Given function is f (x) = Functions 1(c) images 16

          f (x) is defined when x – 2 ≠ 0

          ⟹ x ≠ 2

         Domain of f(x) is R – {2}

         Let y = Functions 1(c) images 16

            =Functions 1(c) images 17

             = x + 2

       If x = 2 ⟹ y = 2 + 2 = 4

        ∴ Range of f(x) is R – {4}

Functions Exercise 1c

(v) 

f (x) =Functions 1(c) images 18

let y =Functions 1(c) images 18

      y2 = 9 + x2

          x2 = y2 – 9

       x = Functions 1(c) images 19

     it is defined when y2 – 9 ≥ 0

      ⟹ (y – 3) (y + 3) ≥ 0

    y ∈ (– ∞, – 3] ∪ [3, ∞)

but y = Functions 1(c) images 18 ≥ 0

∴ Range of f(x) is [3, ∞)

3. If f and g are real valued functions f(x) = 2x – 1 ang g (x) = x2 then   
    find

Sol:

    Given f and g are real valued functions f(x) = 2x – 1 ang g (x) = x2

(i)

(3f – 2g) (x) = 3 f(x) – 2g (x)

                         = 3 (2x – 1) – 2(x2)

                         = 6x – 3 – 2x2

                          = – 2x2 + 6x – 3                   

∴ (3f – 2g) (x) =– 2x2 + 6x – 3

(ii)

(fg) (x) = f (x) g (x)

         = (2x – 1) (x2)

                = 2x3 + x2   

 ∴ (fg) (x) = 2x3 + x2  

(iii) 

Functions 1(c) images 20   

4. If f = {(1, 2), (2, – 3) (3, – 1)} then find (i) 2f (ii) (fog) 2 + f iii) f2 (iv) Functions 1(c) images 21

Sol:

Given f = {(1, 2), (2, – 3) (3, – 1)}

(i)

(2f) (1) = 2 f (1) = 2 × 2 = 4

(2f) (2) = 2 f (2) = 2 × – 3 = – 6

(2f) (3) = 2 f (3) = 2 × – 1 = – 2

∴ 2f = {(1, 4), (2, – 6) (3, – 2)}    

(ii)

(2 + f) (1) = 2 + f (1) = 2 + 2 = 4

(2 + f) (2) = 2 + f (2) = 2 + (– 3) = – 1

(2 + f) (3) = 2 + f (3) = 2 + (– 1) = 1

∴ 2 + f = {(1, 4), (2, – 1) (3, 1)}

(iii) 

(f2) (1) = [f (1))]2 = 22 = 4

(f2) (2) = [f (2))]2 = (– 3)2 = 9

(f2) (3) = [f (1))]2 = (– 1)2 = 1

∴ f2= {(1, 4), (2, 9) (3, 1)}

(iv) 

Functions 1(c) images 22

II. 

1.Find the domain of the following real valued functions

(i)

f (x) = Functions 1(c) images 23

f(x) is defined when x2 – 3x + 2 ≥ 0       

   x2 – 2x – x + 2 ≥ 0

   x (x – 2) – 1(x – 2) ≥ 0

  (x – 1) (x – 2) ≥ 0

   x ∈ (– ∞, 1] ∪ [2, ∞)

∴ Domain of f(x) is R – (1, 2)

(ii)

f(x) = log (x2 – 4x + 3)

f(x) is defined when x2 – 4x + 3 > 0       

   x2 – 3x – x + 3 > 0

   x (x – 3) – 1(x – 3) > 0

  (x – 1) (x – 3) > 0

   x ∈ (– ∞, 1) ∪ (3, ∞)

∴ Domain of f(x) is R – [1, 3]

(iii)

f(x) =Functions 1(c) images 24

f(x) is defined when 2 + x ≥ 0, 2 – x ≥ 0  and x ≠ 0 

 x ≥ – 2, x ≤ 2 and x ≠ 0   

  – 2 ≤ x ≤ 2 and x ≠ 0   

   x ∈ [–2, 2] – {0}

∴ Domain of f(x) is [–2, 2] – {0}

(iv)

f(x) =Functions 1(c) images 26

f(x) is defined in two cases as follows:

case (i) 4 – x2 ≥ 0 and [x] + 2 > 0    

               x2 – 4 ≤ 0 and [x] > –2 

               (x – 2) (x + 2) ≤ 0 and [x] > –2 

                x ∈ [– 2, 2] and x ∈ [– 1, ∞)

                x ∈ [– 1, 2]

case (ii) 4 – x2 ≤ 0 and [x] + 2 < 0       

                x2 – 4 ≥ 0 and [x] < –2 

               (x – 2) (x + 2) ≥ 0 and [x] < –2 

               x ∈ (– ∞, –2] ∪ [2, ∞) and x ∈ (–∞, –2)

                x ∈ (–∞, –2)

from case (i) and case (ii)

   x ∈ (–∞, –2) ∪ [– 1, 2]

∴ Domain of f(x) is (–∞, –2) ∪ [– 1, 2]

(v)

f(x) = Functions 1(c) images 27

f(x) is defined when Functions 1(c) images 28≥ 0 and x – x2 > o

 x – x2 ≥ (0.3)0   and x2 – x < 0

x – x2 ≥ 1 and x (x – 1) < 0

   x2 –x + 1 ≤ 0 and (x – 0) (x – 1) < 0

 it is true for all x ∈ R and x ∈ (0, 1)

∴ domain of f(x) =  R∩ (0, 1) = (0, 1)

(vi)

f(x) =Functions 1(c) images 29

f(x) is defined when x +|x| ≠ 0       

  |x| ≠ – x      

  |x| ≠ – x      

 ⟹|x| = x      

 ⟹ x > 0   

   x ∈ (0, ∞)

∴ Domain of f(x) is (0, ∞)

2. Prove that the real valued function Functions 1(c) images 30 is an even function

Sol:

Given f(x) = Functions 1(c) images 30

Functions 1(c) images 31 

                         Functions 1(c) images 32

3. Find the domain and range of the following functions

 

(i)

f (x) = Functions 1(c) images 33

Given f(x) =Functions 1(c) images 33

 Since [x] is an integer

  sin π[x] = tan π[x] = 0 ∀ x ∈ R

∴ domain of f(x) is R

and

since tan π[x] = 0

 Range of f(x) = {0}

(ii)

f(x) = Functions 1(c) images 34

Given f (x) = Functions 1(c) images 34

 It is defined when 2 – 3x ≠ 0

⟹ 2 ≠ 3x 

⟹ x ≠ 2/3

∴ Domain of f (x) = R – {2/3} 

Let y = f(x)

        y =Functions 1(c) images 34

  ⟹ y (2 – 3x) = x

          2y – 3xy = x

          2y = x + 3xy  

           2y = x (1 + 3y)

   ⟹ x = Functions 1(c) images 35

    It is defined when 1 + 3y ≠ 0

                                        1 ≠ –3y

                                      y ≠ – 1/3

∴ Range of f (x) = R – {– 1/3} 

(iii) 

f(x) = |x| + | 1 + x|

Given function is f (x) = |x| + |1 + x|

             f (x) is defined for all x ∈ R

           ∴ domain of f(x) = R

        Functions 1(c) images 36

            f (– 3) = |– 3| + |1 – 3|

                        =|– 3| + |– 2|

                       = 3 + 2 = 5 

            f (– 2) = |– 2| + |1 – 2|

                        =|– 2| + |– 1|

                        = 2 + 1 = 3

            f (– 1) = |– 1| + |1 – 1|

                        =|– 1| + |0|

                        = 1 + 0 = 1

            f (0) = |0| + |1 + 0| = 1

            f (1) = |1| + |1 + 1|

                      = 1 + |2|

                      = 1 + 2 = 3

            f (2) = |2| + |1 + 2|

                      = |2| + |3|

                      = 2 + 3 = 5

            f (3) = |3| + |1 + 3|

                      = |3| + |4|

                      = 3 + 4 = 7

∴ Range of f(x) = [1, ∞)


Visit my Youtube Channel: Click on Below Logo

AS_Tutorioal_Png

Functions Exercise 1b

Functions Exercise 1b Solutions

Functions Exercise 1b Solutions 

Functions Exercise 1b

The famous mathematician ” Lejeune Dirichlet”  defined a function.

Function: A variable is a symbol which represents any one of a set of numbers, if two variables x and y so related that whenever a value is assigned to x there is autometically assigned by some rule or correspondence a value to y, then we say y is a function of x.

Chapter 1 Functions Exercise 1b Solutions for inter first year  students, prepared by Mathematics expert of www.basicsinmaths.com

Functions Exercise 1b

Exercise 1(b) Solutions

I.

1.If f (x) = ex and g(x) = Functions 1(b) images 1, then show that f og = gof and f-1 = g-1

Sol:

Given     f (x) = ex and g(x) =Functions 1(b) images 1

              (fog) (x) = f (g (x))

                                = f ( Functions 1(b) images 1)

                                =Functions 1(b) images 2

                                = x ————- (1)

            (gof) (x) = g (f (x))

                                = g (ex)

                                =Functions 1(b) images 3

                                = xFunctions 1(b) images 4

                                = x ————- (2)

From (1) and (2)  f og = gof

let y = f(x)

     x = f-1(y)

     y = ex

     x = Functions 1(b) images 5

    f-1 (x) = Functions 1(b) images 1

let g(x) = z

         x = g-1(z)

         z =Functions 1(b) images 1

          x = ez

             g-1 (x)  = ex

2. If f (y) =Functions 1(b) images 6 ,  g (y) =Functions 1(b) images 7 then show that fog(y) = y

Sol:

Given f (y) =Functions 1(b) images 6 ,  g (y) = Functions 1(b) images 7        

Now

     fog(y) = f(g(y))

Functions 1(b) images 8

∴ fog(y) = y

3. If f: R ⟶ R, g: R ⟶ R is defined by f(x) = 2x2 + 3 ang g (x) = 3x – 2 then find
       (i)  (fog) (x)    (ii) (gof) (x)       (iii) (fof) (0)      (iv) go(fof)(3)

Sol:

    Given f: R ⟶ R is, g: R ⟶ R is defined by f(x) = 2x2 + 3 ang g (x) = 3x – 2

(i)  (fog) (x) = f(g(x))

                 = f(3x – 2)

                 = 2 (3x – 2)2 + 3

                 = 2 (9x2 – 12x + 4) + 3

                 = 18 x2 – 24x + 8 + 3

                = 18 x2 – 24x + 11

∴ (fog) (x) = 18 x2 – 24x + 11

 

(ii)  (gof) (x) = g (f (x))

                 = g (2x2 + 3)

                 = 3(2x2 + 3) – 2  

                 = 6x2 + 9 – 2

                 = 6 x2 + 7

 ∴ (gof) (x) = 6 x2 + 7

PDF Files || Inter Maths 1A &1B || (New)

6th maths notes|| TS 6 th class Maths Concept

TS 10th class maths concept (E/M)

(iii)  (fof) (0) = f (f (0))

                 = f (2(0)2 + 3)

                = f (2(0) + 3)

                = f (3)

                = 2 (3)2 + 3

                = 2 (9) + 3

                = 18 + 3 = 21

(iv)  go(fof) (3) = go (f (f (3)))

                     = go (f (2 (3)2 + 3))

                     = go (f (21))

                     = g (f (21))

                     = g (2 (21)2 + 3))

                     = g (2 (441) + 3))

                     = g (882 + 3)

                     = g (885)

                     = 3 (885) – 2

                     = 2655 – 2

                     = 2653

∴ go(fof) (3) = 2653

 

Functions Exercise 1b

Ts Inter Maths IA Concept

4. If f: R ⟶ R; g: R ⟶ R is defined by f(x) = 3x – 1, g (x) = x2 + 1, then find     
     (i) (fof) (x2 + 1)    (ii) (fog) (2)        (iii) (gof) (2a – 3)

Sol:

Given f: R ⟶ R; g: R ⟶ R is defined by f(x) = 3x – 1, g (x) = x2 + 1

(i) (fof) (x2 + 1) = f (f (x2 + 1))

                          = f (3 (x2 + 1)– 1)

                          = f (3x2 + 3– 1)

                          = f (3x2 + 2)

                          = 3(3x2 + 2) – 1

                          = 9x2 + 6 – 1

                          = 9x2 + 5                

(ii) (fog) (2) = f (g (2))

                  = f (22 + 1)

                  =f (4 + 1)

                  = f (5)

                  = 3(5) – 1

                  = 15 – 1

                  = 14

(iii) (gof) (2a – 3) = g (f (2a – 3))

                            = g (3(2a – 3) – 1)

                            = g (6a – 9 – 1)

                            = g (6a – 10)

                            = (6a – 10)2 + 1

                            = 362 – 120a + 100 + 1

                            = 362 – 120a + 101

 

5. If f(x) = Functions 1(b) images 9 and g(x) =Functions 1(b) images 10 for all x ∈ (0, ∞) then find (gof) (x)

Sol:

Given f(x) = Functions 1(b) images 9 and g(x) = Functions 1(b) images 10 for all x ∈ (0, ∞)

  (gof) (x) = g (f (x))

                    = g (Functions 1(b) images 10 )

                    =Functions 1(b) images 11

               ∴ (gof) (x) =Functions 1(b) images 12

6. If f(x) = 2x – 1 and g(x) =Functions 1(b) images 13 for all x ∈ R then find (gof) (x)

Sol:

   Given f(x) = 2x – 1 and g(x) = Functions 1(b) images 13 for all x ∈ R

  Functions 1(b) images 14           

∴ gof(x) = x

7. If f (x) = 2, g (x) = x2 and h(x) = 2x ∀ x ∈ R, then find (fo(goh)) (x)

Sol:

       Given f (x) = 2, g (x) = x2 and h(x) = 2x ∀ x ∈ R

         (fo(goh)) (x) = fo (g (h (x))

                                   = fo g(2x)

                                   = f (g(2x))

                                   = f((2x)2)

                                   = f(4x2)

                                   = 2                            

       ∴ (fo(goh)) (x) = 2

 

Functions Exercise 1b Solutions

8. Find the inverse of the following functions

(i) a, b ∈ R, f: R ⟶ R defined by f(x) = ax + b, (a ≠ 0)

Given a, b ∈ R, f: R ⟶ R defined by f(x) = ax + b

 Let y = f(x)

         x = f-1(y)

now y = ax + b

          ax = y – b

             x =Functions 1(b) images 15

            f-1(y) =Functions 1(b) images 15

     ∴   f-1(x) =Functions 1(b) images 16

(ii) f: R ⟶ (0, ∞) defined by f(x) = 5x

  Let y = f(x)

         x = f-1(y)

  now y = 5x

          x =Functions 1(b) images 17

             f-1(y) =Functions 1(b) images 17

     ∴   f-1(x) =Functions 1(b) images 18

(iii) f: (0, ∞) ⟶ R defined by f(x) =Functions 1(b) images 19

    Let y = f(x)

         x = f-1(y)

   now y =Functions 1(b) images 19

          x = 2y

             f-1(y) = 2y

     ∴   f-1(x) = 2x

9. If f(x) = 1 + x + x2 + … for Functions 1(b) images 20 , then show that f-1 (x) = Functions 1(b) images 21     

Sol:

Given, f(x) = 1 + x + x2 + … for

        1 + x + x2 + … is an infinite G.P

        a = 1, r = x

  S =Functions 1(b) images 22

         =Functions 1(b) images 23

Now

f (x) =Functions 1(b) images 23

Let y = f(x)

         x = f-1(y)

   now y =Functions 1(b) images 23

           1 – x = Functions 1(b) images 24

   x = 1 –Functions 1(b) images 24

       =Functions 1(b) images 25

             f-1(y) =Functions 1(b) images 25

     ∴   f-1(x) =Functions 1(b) images 26

10 . If f: [1, ∞) ⟶ [1, ∞) defined by f (x) = 2x (x – 1) then find f-1 (x)

Sol:

Given f: [1, ∞) ⟶ [1, ∞) defined by f (x) = 2x (x – 1)

Let y = f(x)

         x = f-1(y)

   now y = 2x (x – 1)

            Functions 1(b) images 27= x (x – 1)

    x2 – x =  Functions 1(b) images 27

    x2 – x – Functions 1(b) images 27  = 0

Functions 1(b) images 28

Functions 1(b) images 29

 

Functions Exercise 1b Solutions

II. 

1. If f (x) = Functions 1(b) images 30  , x ≠ ± 1, then verify (fof-1) (x) = x

Sol:

   Given f (x) =Functions 1(b) images 30  , x ≠ ± 1

Let y = f(x)

         x = f-1(y)

   now y =Functions 1(b) images 30

            y (x + 1) = x – 1

            xy + y = x – 1

            1 + y = x – xy

            1 + y = x (1 – y)

             x = Functions 1(b) images 31 

             f-1(y) =Functions 1(b) images 31

     ∴   f-1(x) =Functions 1(b) images 32

Now

        Functions 1(b) images 33

2.  If A = {1, 2, 3}, B = {α, β, γ}, C = {p, q, r} and f: A ⟶ B; g: B ⟶ C is defined by f = {(1, α), (2, γ), (3, β)}, g = {(α, q), (β, r), (γ, p)}, then show that f and g are bijective functions and (gof)-1 = f-1og-1

Sol:

Given A = {1, 2, 3}, B = {α, β, γ}, C = {p, q, r} and f: A ⟶ B; g: B ⟶ C is defined by f = {(1, α), (2, γ), (3, β)}, g = {(α, p), (β, r), (γ, p)}

A = {1, 2, 3}, B = {α, β, γ}

f: A ⟶ B; and f = {(1, α), (2, γ), (3, β)}

 ⟹ f (1) = α; f (2) = γ; f (3) = β

       ⟹    Every element of set A has a unique image in set B

          f is injection (one – one)

range of f = codomain of f

⟹ f is surjection (on to)

∴ f is bijective

B = {α, β, γ}, C = {p, q, r}

g: B ⟶ C is defined by g = {(α, q), (β, r), (γ, p)}

⟹ g (α) =q; g (β) = r; g (γ) = p

       ⟹    Every element of set B has a unique image in set C

          g is injection (one – one)

range of g = codomain of g

⟹ g is surjection (on to)

∴ g is bijective

Now

f = {(1, α), (2, γ), (3, β)}, g = {(α, q), (β, r), (γ, p)}

gof = {(1, q), (2, p), (3, r)

(gof)-1 = {(q, 1), (p, 2), (r, 3)} ———– (1)

f-1 = {(α, 1), (γ, 2), (β, 3)

g-1 = {(q, α), (r, β), (p, γ)}

f-1og-1 = {(q, 1), (p, 2), (r, 3)} ———– (2)

From (1) and (2)

(gof)-1 = f-1og-1

3. If f: R ⟶ R; g: R ⟶ R is defined by f (x) = 3x – 2 and g(x) = x2 + 1          then find
 (i) (gof-1) (2)           (ii) (gof) (x – 1)

 

Sol:

    Given f: R ⟶ R; g: R ⟶ R is defined by f (x) = 3x – 2 and g(x) = x2 + 1

     Let y = f(x)

         x = f-1(y)

   now y = 3x – 2

            3x = y + 2

               x = Functions 1(b) images 34

       f-1(y) =Functions 1(b) images 34

       f-1(x) =Functions 1(b) images 35

Functions 1(b) images 36

∴ (gof-1) (2)   =Functions 1(b) images 37

(ii)  (gof) (x – 1) = g (f (x – 1))

                             = g (3(x – 1) – 2)

                             = g (3x – 3 – 2)

                             = g (3x – 5)

                             = (3x – 5)2 + 1

                             = 9x2 – 30x + 25 + 1

                             = 9x2 – 30x + 26

∴(gof) (x – 1) = 9x2 – 30x + 26

 

4. Let f = {(1, a), (2, c), (4, d), (3, b)} and g-1 = {(2, a), (4, b), (1, c), (3, d)}, then show that (gof)-1 = f-1og-1

 

Sol:

Given f = {(1, a), (2, c), (4, d), (3, b)} and g-1 = {(2, a), (4, b), (1, c), (3, d)}

⟹ f -1 = {(a, 1), (c, 2), (d, 4), (b, 3)} and g = {(a, 2), (b, 4), (c, 1), (d, 3)}

Now gof = {(1, 2), (2, 1), (4, 3), (3, 4)}

          (gof)-1 = {(2, 1), (1, 2), (3, 4), (4, 3)} ———(1)

g-1 = {(2, a), (4, b), (1, c), (3, d)} ; f -1 = {(a, 1), (c, 2), (d, 4), (b, 3)}

f-1og-1 = {(2, 1), (1, 2), (3, 4), (4, 3)} ———(2)

from (1) and (2)

(gof)-1 = f-1og-1      

 

5. If f: R ⟶ R; g: R ⟶ R is defined by f (x) = 2x – 3 and g(x) = x3 + 5 then find (fog)-1 (x)

 

Sol:

      Given R ⟶ R; g: R ⟶ R is defined by f (x) = 2x – 3 and g(x) = x3 + 5

       (fog) (x) = f (g(x))

                         = f (x3 + 5)

                          = 2 (x3 + 5) – 3

                         = 2 x3 + 10 – 3 = 2x3 + 7

Let y = (fog) (x)

     ⟹ x = (fog)-1(y)

       y = 2x3 + 7

       2x3 = y – 7

          x3 =Functions 1(b) images 38

          x =Functions 1(b) images 39

(fog)-1(y)=  Functions 1(b) images 39      

(fog)-1(x)=Functions 1(b) images 40        

6. Let f(x) = x2, g(x) = 2x then solve the equation (fog) (x) = (gof) (x)

 

Sol:

  Given f(x) = x2, g(x) = 2x

  (fog) (x) = f(g(x))

                    = f (2x)

                     = (2x)2

                     = 22x

(gof) (x) = g(f(x))

                  = g (x2)

                  =Functions 1(b) images 41

    Now

      (fog) (x) = (gof) (x)

     ⟹ 22x =Functions 1(b) images 41

           2x = x2   [∵ if am = an , then m = n]

           x2 – 2x = 0

         ⟹ x (x – 2) = 0

         ⟹x = 0 or x – 2 = 0

∴ x = 0 or x = 2

7.  If f (x) = , x ≠ ±1 then find (fofof) (x) and (fofofof) (x)

 

Sol:

Given f (x) = Functions 1(b) images 43, x ≠ ±1

Functions 1(b) images 42

Functions 1(b) images 44

 

PDF Files || Inter Maths 1A &1B || (New)

6th maths notes|| TS 6 th class Maths Concept

TS 10th class maths concept (E/M)

Ts Inter Maths IA Concept

TS 10th Class Maths Concept (T/M)

 


Visit my Youtube Channel: Click on Below Logo

AS_Tutorioal_Png

Functions Exercise 1a Solutions

chapter 1 Functions Exercise 1a Solutions

Functions Exercise 1a Solutions

Functions Exercise 1a

The famous mathematician ” Lejeune Dirichlet”  defined a function.

Function: A variable is a symbol which represents any one of a set of numbers, if two variables x and y so related that whenever a value is assigned to x there is autometically assigned by some rule or correspondence a value to y, then we say y is a function of x.

Chapter 1 Functions Exercise 1a Solutions for inter first year  students, prepared by Mathematics expert of www.basicsinmaths.com

  Exercise 1a

 

I.

1. If the function f is defined by

        Functions 1(a) images 1

   then find the values of (i) f (3)    (ii) f (0)      (iii) f (– 1.5)       (iv) f (2) + f (– 2)       (v) f (– 5 )

Sol:

Given Functions 1(a) images 1

      Domain of f(x) is (– 3, ∞)

(i) f (3)

3 lies in the interval x > 1

⟹ f(x) = x + 2

     f(3) = 3 + 2 = 5

     ∴ f (3) = 5

 

(ii) f (0)

0 lies in interval – 1 ≤ x ≤ 1

 ⟹f(x) = 2 

      ∴ f (0) = 2

 

(iii) f (– 1.5)

         – 1.5 lies in interval – 3 < x < – 1 

⟹f(x) = x – 1 

     f (– 1.5) = – 1.5 – 1 = – 2.5

      ∴ f (– 1.5) = – 2.5

 

(iv) f (2) + f (– 2)

        2 lies in the interval x > 1 

⟹ f (x) = x + 2

     f (3) = 2 + 2 = 4

      f (2) = 4

         – 2 lies in interval – 3 < x < – 1 

⟹f(x) = x – 1 

     f (– 2) = – 2 – 1 = – 3

     f (– 2) = – 2 – 1 = – 3

now f (2) + f (– 2) = 4 – 3 = 1

          ∴ f (2) + f (– 2) = 1

(v) f (– 5)

since domain of f(x) is (– 3, ∞)

f (– 5) is not defined

2. If f: R – {0} ⟶ R is defined by f(x) = Functions 1(a) images 2, then show that f (x) + f (1/x) = 0

Sol:

Given f: R – {0} ⟶ R is defined by f(x) = Functions 1(a) images 2

       f (1/x)  = Functions 1(a) images 3

Now

f (x) + f (1/x)  = Functions 1(a) images 4

∴ f (x) + f (1/x)  = 0

3. If f: R ⟶ R is defined by f(x) = Functions 1(a) images 5, then show that f (tan θ) = cos 2θ

Sol:

    Given f: R ⟶ R is defined by f(x) =Functions 1(a) images 5

       f (tan θ) =Functions 1(a) images 6

                    = cos 2θ   Functions 1(a) images 7

 

4. If f: R – {±1} ⟶ R is defined by f(x) = Functions 1(a) images 8 , then show that f Functions 1(a) images 9 = 2 f (x)

Sol:

Given f: R – {±1} ⟶ R is defined by f(x) =

            Functions 1(a) images 10

5. If A = {– 2, – 1, 0, 1, 2} and f: A ⟶ B is a surjection (onto function) defined by f(x) = x2 + x + 1, then find B

Sol:

Given A = {– 2, – 1, 0, 1, 2} and   f: A ⟶ B is a surjection defined by f(x) = x2 + x + 1

f(– 2) = (–2)2 + (–2) + 1

            = 4 – 2 + 1 = 3

f(– 1) = (–1)2 + (–1) + 1

            = 1 – 1 + 1 = 1

f(0) = (0)2 + (0) + 1

            = 0 + 0 + 1 = 1

f(1) = (1)2 + (1) + 1

            =1 +1 + 1 = 3

f( 2) = (2)2 + (2) + 1

            = 4 + 2 + 1 = 4

∴ B = {1, 3, 7}

TS 10th class maths concept (E/M)

Functions Exercise 1a

 

 

6. If A = {1, 2, 3,4} and f: A ⟶ B is a surjection defined by f(x) = Functions 1(a) images 11, then find range of f.

Sol:

Given A = {1, 2, 3,4} and f: A ⟶ B is a surjection defined by f(x) =Functions 1(a) images 11

    Functions 1(a) images 12

7. If f (x + y) = f (xy) ∀ x, y ∈ R, then prove that f is a constant function

Sol:

       Given f (x + y) = f (xy) ∀ x, y ∈ R

        Let x = 0 and y = 0

         f (0 + 0) = f (0 × 0) = f (0)

         f (1) = f (0 + 1)

                  = f (0 × 1)

                   = f (0)

         f (2) = f (1 + 1)

                  = f (1 × 1)

                 = f (1)

                 = f (0)

       f (3) = f (1 + 2)

                = f (1 × 2)

                = f (2)

                = f(0)

Similarly, f(4) = 0

                    f(5) = 0

and so on.

∴ f is a constant function

PDF Files || Inter Maths 1A &1B || (New)
6th maths notes|| TS 6 th class Maths Concept

 

II.

1. If A = {x/ – 1 ≤ x ≤ 1}, f(x) = x2, g(x) = x3, which of the following are surjections?

      (i) f: A ⟶ A                 (ii) g: A ⟶ A

Sol:

(i) Given A = {x/ – 1 ≤ x ≤ 1}, f(x) = x2

A = {– 1, 0, 1}; f: A ⟶ A                

f (x) = x2

f (– 1) = (– 1)2 = 1

f (0) = (0)2 = 0

f (1) = (1)2 = 1

∵ range is not equal to co domain of f

f is nor a surjection

(ii) A = {x/ – 1 ≤ x ≤ 1}, g (x) = x3

A = {– 1, 0, 1}; g: A ⟶ A

g (x) = x3

g (– 1) = (– 1)3 = – 1

g (0) = (0)3 = 0

g (1) = (1)3 = 1

∵ range is equal to co domain of f

f is a surjection      

2. Which if the following are injection, surjection or bijection? Justify your answer

(i) f: R ⟶ R defined by f(x) =Functions 1(a) images 13

      let x1, x2 ∈ R

     f(x1) = f(x2)

Functions 1(a) images 14

      2x1 + 1 = 2x2 + 1

      2x1 = 2x2

       x1 = x2

x1, x2 ∈ R, f(x1) = f(x2) ⟹ x1 = x2

∴ f is an injection

Let y = f(x)

       y =Functions 1(a) images 15

3y = 2x + 1

3y – 1 = 2x

⟹ x = Functions 1(a) images 16 ∈ R

Now

         Functions 1(a) images 17           

∴ f is surjection

f is injection and surjection

∴ f is a bijection

 

(ii) f: R ⟶ (0, ∞) defined by f(x) = 2x

let x1, x2 ∈ R

     f(x1) = f(x2)

       Functions 1(a) images 27            

       x1 = x2

x1, x2 ∈ R, f(x1) = f(x2) ⟹ x1 = x2

∴ f is an injection

Let y = f(x)

       y = 2x

 x = Functions 1(a) images 18  ∈ (0, ∞)

 

Now f(x) = 2x

                  = Functions 1(a) images 19

                  = y

∴ f is surjection

f is injection and surjection

∴ f is a bijection

(iii) f: (0, ∞) ⟶ R defined by f(x) =Functions 1(a) images 21

  let x1, x2 ∈ (0, ∞)

     f(x1) = f(x2)

          Functions 1(a) images 20

       x1 = x2

x1, x2 ∈ (0, ∞), f(x1) = f(x2) ⟹ x1 = x2

∴ f is an injection

Let y = f(x)

       y =Functions 1(b) images 1

 x = ey ∈ (0, ∞)

 Now f(x) =Functions 1(a) images 21

                  = Functions 1(a) images 22

                  = y

∴ f is surjection

f is injection and surjection

∴ f is a bijection

(iv) f: [0, ∞) ⟶ [0, ∞) defined by f(x) = x2

  let x1, x2 ∈ [0, ∞)

     f(x1) = f(x2)

     Functions 1(a) images 28           

       x1 = x2 [∵ x1, x2 ∈ [0, ∞)]

 x1, x2 ∈ [0, ∞), f(x1) = f(x2) ⟹ x1 = x2

∴ f is an injection

Let y = f(x)

       y = x2

 x = Functions 1(a) images 23 ∈ [0, ∞)

 Now f(x) = x2

                   =Functions 1(a) images 24

                  = y

∴ f is surjection

f is injection and surjection

∴ f is a bijection

(v) f: R ⟶ [0, ∞) defined by f(x) = x2

  let x1, x2 ∈ R

     f(x1) = f(x2)

        Functions 1(a) images 28 - 1        

       x1 = ± x2 [∵ x1, x2 ∈ R]

 x1, x2 ∈ [0, ∞), f(x1) = f(x2) ⟹ x1 ≠ x2

∴ f is not an injection

Let y = f(x)

       y = x2

 x = Functions 1(a) images 23∈ R

 Now f(x) = x2

                   =Functions 1(a) images 24

                  = y

∴ f is surjection

f is not an injection but surjection

∴ f is not a bijection

(vi) f: R ⟶ R defined by f(x) = x2

  let x1, x2 ∈ R

     f(x1) = f(x2)                

       x1 = ± x2 [∵ x1, x2 ∈ R]

 x1, x2 ∈ [0, ∞), f(x1) = f(x2) ⟹ x1 ≠ x2

∴ f is not an injection

 f (1) = 12 = 1

 f (– 1) = (–1)2 = 1

here ‘– 1’ has no pre image 

∴ f is not a surjection

f is not an injection and not surjection

∴ f is not a bijection

 

Ts Inter Maths IA Concept

hai

 

3. Is g = {(1, 1), (2, 3), (3, 5), (4, 7)} is a function from A = {1, 2, 3, 4} to B = {1, 3, 5, 7}? If this is given by the formula g(x) = ax + b, then find a and b

Sol:

Given A = {1, 2, 3, 4}, B = {1, 3, 5, 7} and g = {(1, 1), (2, 3), (3, 5), (4, 7)}

g (1) = 1; g(2) = 3; g(3) = 5 ; g(4) = 7

here, every element of set A has a unique image in set B

  ∴ g: A ⟶ B is a function

And also given g(x) = ax + b

g (1) = 1

⟹ a (1) + b = 1

       a + b = 1

       b = 1 – a _______________   (1)

g (2) = 3

      a (2) + b = 3

   2a + b = 3

    2a + 1 – a = 3 (from (1))

     a+ 1 = 3

      a = 2

     b = 1 – 2

     b = – 1

∴ a = 2, b = – 1

4. If the function f: R ⟶ R defined by f(x) = Functions 1(a) images 29 , then show that f (x + y) + f (x – y) = 2 f (x) f (y).

Sol:

 Given the function f: R ⟶ R defined by f(x) =Functions 1(a) images 29

Functions 1(a) images 30

                                                       = 2 f (x) f (y)

5. If the function f: R ⟶ R defined by f(x) = Functions 1(a) images 31 , then show that f (1 – x) = 1 – f (x)

and hence reduce the value of Functions 1(a) images 32

Sol:

Given the function f: R ⟶ R defined by f(x) =Functions 1(a) images 31

Functions 1(a) images 33 

∴ f (1 – x) = 1 – f(x)

 

TS 10th Class Maths Concept (T/M)
TS 10th class maths concept (E/M)
 

6. If the function f: {– 1, 1} ⟶ {0, 2}, defined by f(x) = ax + b is a surjection, then find a and b

Sol:

Given the function f: {– 1, 1} ⟶ {0, 2}, defined by f(x) = ax + b is a surjection

Case(i)

         Functions 1(a) images 34 

  If f(– 1) = 0 and f(1) = 2

            a (– 1) + b = 0

           – a + b = 0

              b = a ————(1)

       and

        a (1) + b = 2

         a + b = 2

        a + a = 2         [ from (1)]

         2a = 2

           a = 1

            b = 1

Case (ii)

        Functions 1(a) images 35

  If f(– 1) = 2 and f(1) = 0

            a (– 1) + b = 2

           – a + b =  

              b = 2 + a ————(2)

       and

        a (1) + b = 0

         a + b = 0

        a + 2 + a = 0         [ from (2)]

         2a + 2 = 0

           2a = – 2

            a = – 1

            b = 1

From Case(i) and  Case (ii) a = ±1 and b = 1

7. If f(x) = cos (log x), then show that Functions 1(a) images 36= 0

Sol

Given f(x) = cos (log x)

Functions 1(a) images 37

Functions 1(a) images 38

Functions 1(a) images 36 =

                             cos (log x) cos (log y) – Functions 1(a) images 39 [cos (log x) cos (log y) – sin (log x) sin (log x)

                         + cos (log x) cos (log y) + sin (log x) sin (log x)]

                          = cos (log x) cos (log y) – Functions 1(a) images 39 [2cos (log x) cos (log y)]

                          = cos (log x) cos (log y) – cos (log x) cos (log y)

          ∴ Functions 1(a) images 36   = 0


Visit my Youtube Channel: Click on Below Logo

AS_Tutorioal_Png


 

polycet solved previous qp 2020

Maths polycet solved previous qp 2020- || Solved Papers

polycet solved previous qp 2020 TS Polycet || Solved Previous Question Papers 2020 Math

 

polycet solved previous qp 2020

polycet solved previous qp 2020

The State Board of Technical Education and Training (SBTET), Telangana, Hyderabad will conduct “Polytechnic Common Entrance Test (POLYCET)” for the candidates seeking admission in to all Diploma Courses in Engineering /Non Engineering Technology.

The Main Subjects in this Exam are Maths, Physics, Chemistry and Biology. Here we are providing Previous Maths  Papers Questions and Solutions.

The syllabus of  Maths, Physics, Chemistry and Biology for POLYCET-2022 is the same as that of SSC Examination conducted by the Board of Secondary Education, Telangana.

TS Polycet || Solved Previous Question Papers 2021 Mathematics gives an idea becuase,  it is very helpful to solve the problems in POLYCET entence  examination

 

 

TS VI – IX Maths Concepts


polycet solved previous qp 2020

 

Chapter 1: Real Numbers

1.If 7 divides a2 then

a2  ను 7 భాగించినచో

   (1)  7 divides a (a ను 7 భాగిస్తుంది)

   (2) 7 divides TS POLYCET 2020 - Real Numbers 1 ( TS POLYCET 2020 - Real Numbers 1ను 7 భాగిస్తుంది)

  (3) a divide 7 (7 ను a భాగిస్తుంది)

  (4) none (ఏదీ కాదు)  

Answer:  (1)     

2. In the formula TS POLYCET 2020 - Real Numbers 2, which of the following is true?

    TS POLYCET 2020 - Real Numbers 2అయిన, ఈ క్రింది వాటిలో ఏది సత్యము.

    (1)  x > 0, y > 0, a = 1       

    (2) x < 0, y < 0, a = 1  

    (3)  a > 0, y > 0, x = 1       

    (4) x > 0, y > 0, a ≠ 1                                    

Answer:   (4)      

                 

3. 5 =____________
  TS POLYCET 2020 - Real Numbers 3

Answer:   (3)             

                                      

4. TS POLYCET 2020 - Real Numbers 5 then x =
      TS POLYCET 2020 - Real Numbers 5అయిన,  x =
     (1) n                   (2) 1                          
     (3)  5                  (4) 2    

Answer:    (4)        

             

5. TS POLYCET 2020 - Real Numbers 10 , ac = ___
   TS POLYCET 2020 - Real Numbers 10అయిన, ac = ___
   (1)a2         (2)b2                                 
   (3) c2       (4) None(ఏది కాదు)

Answer:    (2)         

         

TS 10th class maths concept (E/M)

TS 6th Class Maths Concept

TS 10th Class Maths Concept (T/M)

AS Tutorial In Telugu - QR code

 

Chapter 2: Sets

1.Cardinal number of set A = {P, O, L, Y, T, E, C, H, N, I, Q} , B = {P, O, L, Y, C, E, T, 2020}, then B – A =

 A = {P, O, L, Y, T, E, C, H, N, I, Q} , B = {P, O, L, Y, C, E, T, 2020}, అయిన B – A =

 (1)  {20}   

 (2) {2020}                         

 (3) {40}           

 (4) none (ఏది కాదు)

Answer:   (2)         

   

2. If A = {a} and B = {a, b} , C =  {a, b, c}, then A ∩ B ∩ C  =

A = {a} and B = {a, b} , C =  {a, b, c}, అయిన A ∩ B ∩ C  =

   (1) {a}                  (2)  {b}   

   (3) {c}                  (4) {2021}

Answer:   (1)       

   

 

Ts Inter Maths IA Concept

TS 10th class maths concept (E/M)

TS 6th Class Maths Concept

AS Tutorial In Telugu - QR code

 

Chapter 3: Polynomials

1. Product of the polynomials (x3 – 8), (x – 8) is denoted by p(x) = ax4 + bx3 + c x2 + dx +e, then p (8) =
     (x3 – 8), (x – 8) అను బహుపదుల లబ్దము   p(x) = ax4 + bx3 + c x2 + dx +e అయిన, p (8) =
 (1)  0                   (2) 1            
 (3) 2                    (4) 3

Answer: (1)      

         

2. If α, β are the zeroes of  x2 – 1 , α + β =
      α, β లు   x2 – 1అనే వర్గ బహుపదికి శూన్యాలు అయితే α + β విలువ?
    (1) 0                   (2)  1                       
    (3) – 1                (4)  2

Answer:   (1)

   

AS Tutorial In Telugu - QR code

 

 

Chapter 4: Linear equations in Two Variables

 

1.For the equation 2019x + 2020y = 4040, when x= 0 the value of y =
    2019x + 2020y = 4040 అను సమీకరణమునకు x= 0 అయిన, y విలువ
  (1) 2020           (2) 2019                     
   (3) 4                (4) 2           

 

Answer: (4)

   

2. Solution of the equations 7x + 5y = 12 and 5x – 7y = – 2, not equal to
     7x + 5y = 12 మరియు 5x – 7y = – 2 సమీకరణాల సాధన ఈ క్రిది వానీలో దేనికి సమాన కాదు
TS POLYCET 2020 - Linear equations in 2 variables 1

Answer:   (1)

                                      

3. If TS POLYCET 2020 - Linear equations in 2 variables 2 then (x, y) =

  TS POLYCET 2020 - Linear equations in 2 variables 3 అయిన,(x, y) =

(1) (2019, 2020)         (2) (2020, 2019)

(3)  (2019, 2019)       (4) (2020, 2020)

Answer:   (1)

   

4. If (5, 2) is the solution 2x + 3y = 20, ax – by = 0, the (a, b) =
    2x + 3y = 20, ax – by = 0 ల సాధన (5, 2) అయిన (a, b) =  
     (1) (2, 5)                         (2) (5, 2)                            
     (3) (– 2, 5)                   (4) (– 5, 2)   

Answer: (1)                          

   

5. If the system of equations x – y = 1 and ax + y = 2 has unique solution then
      జత సమీకరణాలకు x – y = 1, ax + y = 2 లకు ఏకైక సాధన ఉంటే
     (1) a = 1                        (2) a = – 1                           
     (3) a ≠ 1                        (4)  a ≠– 1

Answer:   (4)                        

   

6. x + y = TS POLYCET 2020 - Linear equations in 2 variables 6 , x – y = 0, then x =
    x + y =TS POLYCET 2020 - Linear equations in 2 variables 6 , x – y = 0, అయిన x =
TS POLYCET 2020 - Linear equations in 2 variables 8

Answer:   (3)                        

   

TS 6th Class Maths Concept

TS 10th class maths concept (E/M)

Ts Inter Maths IA Concept

AS Tutorial In Telugu - QR code

 

Chapter 5: Quadratic Equations

1.If the roots of 2x2 + kx + 3 = 0 are real and equal, then k =

    2x2 + kx + 3 = 0 యొక్క మూలాలు వాస్తవాలు మరియు సమానాలు అయిన k విలువ =

  (1)± 6 TS POLYCET 2020 - Quadratic Equations 1                      (2) ± 4                   

  (2)± 2 TS POLYCET 2020 - Quadratic Equations 2                      (4) ± 5

Answer: (3)                                            

   

2. 8x2 – 6x – 9 = 0= ______

  (1)(2x – 3) (x – 3)         (2) (2x – 3) (x +1)                              

  (3) (2x + 1) (x – 1)            (4) (2x – 3) (4x + 3)                              

    Answer:     (4)                               

   

4. Roots of  5x2 – 8x = 4 are  

    5x2 – 8x = 4   యొక్క మూలాలు

(1) 2, TS POLYCET 2020 - Quadratic Equations 9                           (2) 1,TS POLYCET 2020 - Quadratic Equations 10

(3)   2, TS POLYCET 2020 - Quadratic Equations 11                               (4) 2, 7

Answer:   (1)

   

       

TS 6th Class Maths Concept

TS 10th class maths concept (E/M)

AS Tutorial In Telugu - QR code

 

 

Chapter 6: Progressions

1. 1, -1/2, 1/4…. Are in G.P, then find 8th term

     1, -1/2, 1/4….  అనే గుణ శ్రేడిలోని ఎనిమిదవ పదం

   (1) 1/128                    (2) 1/64                       

  (3) – 1/128                 (4) –1/64

Answer:    (3)

   

2. 4, 7, 10… are in AP, the sum 15 terms is____

    4, 7, 10… A.P లో ఉన్నచో 15 పదాల మొత్తం ____

    (1) 385                   (2) 475

    (3)  375                   (4) 325

Answer:   (3)

   

3. 10th term of AP: 13, 8, 3, – 2, …. is

13, 8, 3, – 2, …. అను అంకశ్రేడిలోని 10 వ పదం

(1) – 32                  (2) – 23                 

(3) 30                       (4) – 30

Answer:   (1)

   

4. Which term of GP: TS POLYCET 2020 - Progressions 2 is 729?

    TS POLYCET 2020 - Progressions 2అనే గుణ శ్రేడిలో  729 ఎన్నవ పదం?

   (1) 10             (2) 12                         

  (3) 14               (4) 16

Answer:  (2) 

   

AS Tutorial In Telugu - QR code

 

Chapter 7: Coordinater Geometry

 

1.If the slope of the line through (2, – 7) and (x, 5) is 3 then x =_________

       (2, – 7), (x, 5) ల గుండా పోవు రేఖ వాలు 3 అయిన x యొక్క విలువ _____

    (1) 4                 (2) 5                

    (3) 6                   (4) 7

   Answer:  (3)                 

   

2. If (8, 1), (k, – 4), (2, – 5) are collinear, then k = ______

     (8, 1), (k, – 4), (2, – 5) లు సరేఖీయాలైన k యొక్క విలువ ______

    (1) 4                   (2) 3                     

     (3) 2                      (4) 1            

Answer:   (2)            

   

3. The point (2, – 3) divides the line segment joining the points (– 1, 3), (4, – 7) in the ratio__

(– 1, 3), (4, – 7) బిందువులతో ఏర్పడు రేఖా ఖండాన్ని (2, – 3) బిందువు విభజించు నిష్పత్తి___

     (1) 3: 2              (2) 2 : 3                          

      (3) 8 : 1                         (4) 1 : 4

Answer:   (1)

                                   

4. The centroid of the triangle whose vertices are (3, – 5), (–7, 4), (10, –2) is

     (3, – 5), (–7, 4), (10, –2) లు శీర్శాలుగా గల త్రిభుజం యొక్క గురుత్వ కేంద్రం____

     (1) (1, 1)                  (2) (1, – 2)

     (3) (–2, 1)               (4) (2, –1)                                  

Answer:  (4)

                 

AS Tutorial In Telugu - QR code

 

 

Ts Polyset 2021 feature image

ts polycet 2021 | Solved Previous Question Papers 2021 Maths

ts polycet 2021

ts polycet 2021 || Solved Previous Question Papers 2021 Maths

The State Board of Technical Education and Training (SBTET), Telangana, Hyderabad will conduct “Polytechnic Common Entrance Test (POLYCET)” for the candidates seeking admission in to all Diploma Courses in Engineering /Non Engineering Technology.

The Main Subjects in this Exam are Mathematics, Physics, Chemistry and Biology. Here we are providing Previous Maths  Papers Questions and Solutions.

The syllabus of  Mathematics, Physics, Chemistry and Biology for POLYCET-2022 is the same as that of SSC Examination conducted by the Board of Secondary Education, Telangaana.

ts polycet 2021

TS Polycet || Solved Previous Question Papers 2021 Maths gives an idea to solve the problems in POLYCET entence  examination


ts polycet 2021

ts polycet 2021

Chapter 1: Real Numbers

 

1. The value of TS POLYCET 2021 - Real Numbers 2 is        
      TS POLYCET 2021 - Real Numbers 2యొక్క  విలువ ఎంత ?

TS POLYCET 2021 - Real Numbers 1

Answer: (2)

 

2.The HCF of 8, 9 and 25 is
8, 9 మరియు 25 గ. సా. కా ఎంత? 
(1) 3               (2) 0           (3)  2          (4)   1       

Answer:   (4)  

 

3. TS POLYCET 2021 - Real Numbers 4is ____________
TS POLYCET 2021 - Real Numbers 4 అనునది____________

     (1) Natural numbers (సహజ సంఖ్య)                

    (2) Irrational number (కరణీయ సంఖ్య)             

     (3) Rational Number (అకరణీయ సంఖ్య)       

    (4)   An Integer (పూర్ణ సంఖ్య)   

Answer: (2)

4. If 2x = 82 then x =?
    2x = 82 అయిన x =?
     (1) 4          (2) 2           (3) 6               (4) 8    

Answer: (3)

 

5.  The value of TS POLYCET 2021 - Real Numbers 5 is
  TS POLYCET 2021 - Real Numbers 5యొక్క విలువ
(1)  1               (2) 2              (3) 3              (4) 4

Answer:   (2)         

 

                        

<< Page 1 of 14 >>

feture images for power point presentation

Power point Presentations

Power point presentations 

 

About a Presentation?

A communication device that relays a topic to an audience in the form of a slide show, a demonstration, a lecture or speech where words and pictures intend to complement each other.

Different Types of  Power Point Presentations:

1) Informative Presentations
2) Instructive Presentations
3) Persuasive Presentations
4) Motivational Presentations
5) Decision-making Presentations
6) Progress Presentations


Real numbers Mcqs

 

 

TS TET Syllabus 2022

TS TET syllabus 2022 For Mathametic Paper 2

TS TET syllabus 2022 For Mathametic Paper 2

 

TS Tet 2022 syllabus For Mathametic Paper 2 is very useful for writing candidates for TS TET. Knowing the syllabus will make the practice of the candidates easier.

TS Tet 2022 Syllabus For Mathametic Paper 2 TS TET రాసె అభ్యర్థులు చాలా ఉపయోగపడుతుంది. సిలబస్ తెలియడం వల్ల అభ్యర్థుల అభ్యసన సులువు అవుతుంది.

 

free Syllabus

 

Telangana Teachers Elgible Test Official Website : Click Her

 TS TET Syllabus

 

I.    సంఖ్యా వ్యవస్థ ( Number System)

 

1 . ప్రధాన సంఖ్యలు మరియు సంయుక్త సంఖ్యలు (Prime and Composite numbers)

2. భాజనీయత సూత్రాలు (Test of divisibility Rules)

3.  సంఖ్యల రకాలు (types of numbers)

4. వాస్తవ సంఖ్యలు (Real numbers)

5. భిన్నాలు మరియు దశాంశ భిన్నాలు (Fractions and Decimal Fractions)

6. క .సా .గు .  మరియు గ . సా .భా. యూక్లిడ్ భాగహార పద్ధతి (LCM and HCF – Euclid division Lemma)

7. వర్గాలు – వర్గ మూలాలు (Squares – Square roots)

8. ఘనాలు  – ఘన మూలాలు (CubsCube roots

9. సంఖ్యల అమరిక మరియు సంఖ్యల ఫజిల్ (Numbers Pattern and Numbers puzzle)

10. యూక్లిడ్ భాజనీయత సూత్రం  (Euclid Division lemma)

11. సంవర్గమానము (Logarithms)

Ts Inter Maths IA Concept
Ts Inter Maths 1B Concept
TS 10th Class Maths Concept (T/M)
TS Inter 2nd Year Maths 2A Concept
TS Inter 2nd Year Maths 2B Concept
TS 6th Class Maths Concept
TS 10th class maths concept (E/M)

 

TS Inter Maths 1A and 1B Model Papers 2022

TS Intermediate First Year Maths Question Papers 2022 PDF

TS Intermediate First Year Maths Question Papers 2022 PDF

 

As per reduced syllabus were designed by the ‘Basics in Maths‘ team.

These Model papers  2022 to do help the intermediate First-year Maths students.

TS Inter Maths 1A and 1B Modelpapers  2022  as per reduced syllabus are very useful in IPE examinations.

 

Ts Inter Maths IA Concept
Ts Inter Maths 1B Concept
TS 10th Class Maths Concept (T/M)
TS Inter 2nd Year Maths 2A Concept
TS Inter 2nd Year Maths 2B Concept
TS 6th Class Maths Concept
TS 10th class maths concept (E/M)

 

Inter Maths 1A Model Papers

TS Inter Maths 1A Model papers  2022 as per reduced syllabus were designed by the ‘Basics in Maths‘ team.

These Model papers  2022 to do help the intermediate First-year Maths students.

Ts Inter Maths IA Concept

TS Inter 1st Year Maths Model Papers PDF – 2022

Inter Maths 1A  Model Papers – I

Loader Loading...
EAD Logo Taking too long?

Reload Reload document
| Open Open in new tab

Ts Inter Maths 1A Concept

 

Inter Maths 1A  Model Papers – II

Loader Loading...
EAD Logo Taking too long?

Reload Reload document
| Open Open in new tab

Inter Maths 1A  Model Papers – III

 

Loader Loading...
EAD Logo Taking too long?

Reload Reload document
| Open Open in new tab

 

Inter Maths 1A  Model Papers – IV

 

Loader Loading...
EAD Logo Taking too long?

Reload Reload document
| Open Open in new tab

 

Inter Maths 1B Model Papers

TS Inter Maths 1B Model papers  2022 as per reduced syllabus were designed by the ‘Basics in Maths‘ team.

These Model papers  2022 to do help the intermediate First-year Maths students.

TS 6th Class Maths Concept

TS Inter 1st Year Maths Model Papers PDF – 2022

 

Inter Maths 1B  Model Papers – I

 

Loader Loading...
EAD Logo Taking too long?

Reload Reload document
| Open Open in new tab

Inter Maths 1B  Model Papers – II

 

Loader Loading...
EAD Logo Taking too long?

Reload Reload document
| Open Open in new tab

 

 

 

Inter Maths 1B  Model Papers – III

Loader Loading...
EAD Logo Taking too long?

Reload Reload document
| Open Open in new tab

 

Inter Maths 1B  Model Papers – IV

Loader Loading...
EAD Logo Taking too long?

Reload Reload document
| Open Open in new tab

 

 

Ts Inter Maths IA Concept
Ts Inter Maths 1B Concept
TS 10th Class Maths Concept (T/M)
TS Inter 2nd Year Maths 2A Concept
TS Inter 2nd Year Maths 2B Concept
TS 6th Class Maths Concept
TS 10th class maths concept (E/M)

 


Visit my Youtube Channel: Click on Below Logo

AS_Tutorioal_Png