CONCEPT

PDF Files

PDF Files || Inter Maths 1A &1B || (New)

Inter Maths 1A &1B|| PDF Files (New)

 

What is PDF?

pdf . png

PDF, or Portable Document Format, is an open file format used for exchanging electronic documents. Documents, forms, images, and web pages encoded in PDF can be correctly displayed on any device, including smartphones and tablets. If you distribute your reports in PDF, you can be sure that all of your pupils or friend will be able to open and read it on their PCs, Macs or Android smartphones.

Inter Mathematics 1A ands 1B Pdf Files|  these   Files were designed by the ‘Basics in Maths‘ team. These notes to do help the intermediate First-year Maths students.

Inter Maths – 1A & 1B   PDF Files are very useful in IPE examinations.

These notes cover all the topics covered in the intermediate First-year Maths syllabus and include plenty of solutions to help you solve all the major types of Math problems asked in the

IPE examinations.  

 


Loader Loading...
EAD Logo Taking too long?

Reload Reload document
| Open Open in new tab

 

MATHEMATICS 1A

Mathematical Induction

Addition Of Vectors SAQ’S

Matrices

Trigonometric Equations

Inverse Trigonometric Functions

TS 10th class maths concept (E/M)

 

 

MATHEMATICS 1B 

DC’s and Dr’s

Tangents and Normals

Rate Measure

Maxima and Minima

Rolles and Langrange’s Theorem

 

 

TS 6th Class Maths Concept


 

Visit my YouTube Channel: Click on Below Logo

 

 

AS_Tutorioal_Png

 

TS VII CLASS MATHS CONCEPT FEATURE IMAGE

TS 7th Class Maths Concept

7th Class Maths Concept

Studying maths in VII class successfully means that children take responsibility for their learning and learn to apply the concepts to solve problems.

These concepts were designed by the ‘Basic in Maths’ team. These notes to do help students fall in love with mathematics and overcome fear.


 1. INTEGERS

 Natural numbers: All the counting numbers starting from 1 are called Natural numbers.

           1, 2, 3… Etc.

 Whole numbers: Whole numbers are the collection of natural numbers including zero.

             0, 1, 2, 3 …

 Integers: integers are the collection of whole numbers and negative numbers.

….,-3, -2, -1, 0, 1, 2, 3,…..

 Integers on a number line:

integers

 Operations on integers:

 addition of integers:

3 + 4 = 7integers addition

-2 + 4 = 2

addion of integers

  Subtraction of integers on a number line:-

6 – 3 = 3subtraction of integers

  Multiplication of integers on a number line:-

2 × 3 ( 2 times of 3) = 6multiplication on number line

           3 × (- 4 ) ( 3 times of -4) = -12

multiplication of itegers

 Multiplication of two negative integers:

  • To multiply two negative integers, first, we multiply them as whole numbers and put plus sign before the result.
  • The multiplication of two negative integers is always negative.

Ex:- -3 × -2 = 6,  -10 × -2 = 20 and so on.

 Multiplication of more than two negative integers:

• If we multiply three negative integers, then the result will be a negative integer.

Ex:- -3 ×   -4 ×   -5 = -60,  -1× -7 × -4 = -28 and so on.

• If we multiply four negative integers, then the result will be a positive integer.

Ex:- -3 ×   -4 ×  -5 × -2  = 120,  -1× -7 × -4  × -2 = 56 and so on.

  Note:-

 1. If the no. of negative integers is even, then the result will be positive.

  2. If the no. of negative integers is odd, then the result will be negative.

multiplication rule

 Division of integers:

  • The division is the inverse of multiplication.
  • When we divide a negative integer by a positive integer or a positive integer by a negative integer, we divide them as whole numbers then put negative signs for the quotient.

Ex:- -3 ÷ 1 = 3, 4 ÷ -2 = -2 and so on.

When we divide a negative integer by a negative integer, we get a positive number as the quotient.

Ex:- -3 ÷ -1 = 3, -4 ÷ -2 = 2 and so on.

       Properties of integers:

      1.Closure property:-

closure

  2.commutative property:-

commutative property

3.associative property:-

associative property

Additive identity:-

1 + 0 = 0 + 1 = 1,   10 + 0 = 0 + 10 = 10

•For any integer ‘a’, a + 0 = 0 + a

•0 is the additive identity.

Additive inverse:-

2 + (-2) = (-2) + 2 = 0,  5 + (-5) = (-5) + 5 = 0

•For any integer ‘a’, a+ (-a) = (-a) + a = 0

•Additive inverse of a = -a and additive inverse of (-a) = a

Multiplicative identity:-

2 × 1 = 1 × 2 = 2,    5 × 1 = 1 × 5 = 5

•For any integer ‘a’, a × 1 = 1 × a = a

•1 is the multiplicative identity.

multiplicative inverse:-

For any integer ‘a’, 1/a × a = a × 1/a = 1

  • multiplicative inverse of a = 1/a
  • Multiplicative inverse of  1/a = a.

distributive property:-

For any three integers a, b and c,    a × (b + c) = (a × b) + (a × c).

3 × (2 + 4) = 18

(3 × 2) + (3 × 4) = 6 + 12 = 18

∴ 3 × (2 + 4) = (3 × 2) + (3 × 4).


2. FRACTIONS, DECIMALS AND RATIONAL NUMBERS

Fraction: A fraction is a number that represents a part of the whole. A group of objects is divided into equal parts, then each part is called a fraction.

 The proper and improper fractions:

In a proper fraction, the numerator is less than the denominator.

Ex: – 1/5, 2/3, and so on.

In an improper fraction, the numerator is greater than the denominator.

Ex: – 5/2,11/5 and so on.

Comparing fractions:

Like fractions: – We have to compare the like fractions with the numerator only because the like fractions have the same denominator. The fraction with the greater numerator is greater and the fraction with the smaller numerator is smaller.

Ex: ,  TS VII maths Fraction, Rational numbers 1  and so on

Unlike fractions: –

With the same numerator: For comparing unlike fractions, we have to compare denominators when the numerator is the same. The fraction with a greater denominator is smaller and the fraction with a smaller denominator is smaller.

Ex: –   TS VII maths Fraction, Rational numbers 2  and so on.

Note: – To find the equivalent fractions of both the fractions with the same denominator, we have to take the LCM of their denominators.

Addition of fractions:

∗ Like Fractions:

vii math addition of fracrtions

∗ Unlike fractions:

vii maths additon of unlike fractions

Subtraction of fractions:

∗ Like fractions:

TS VII maths Fraction, Rational numbers 6

Ex: TS VII maths Fraction, Rational numbers 7

Unlike fractions: – First, we have to find the equivalent fraction of given fractions and then subtract them as like fractions

Ex:  CodeCogsEqn-3

Multiplication of fractions:

Multiplication of fraction by a whole number: –

Multiplication of numbers means adding repeatedly.

Ex: – CodeCogsEqn (2)

multiplying a fraction with whole number

• To multiply a whole number with a proper or improper fraction, we multiply the whole number with the numerator of the fraction, keeping the denominator the same.

2.Multiplication of fraction with a fraction: –

multiplication of two fractions = CodeCogsEqn (3)

Division of fractions:

Ex: – 2 ÷CodeCogsEqn (5) ts vii math division of whole number by a fraction

⇒ 6 one-thirds in two wholes

TS VII maths Fraction, Rational numbers 8

Reciprocal of fraction: reciprocal of a fractionTS VII maths Fraction, Rational numbers 9 is  TS VII maths Fraction, Rational numbers 10 .

Note:

  • dividing by a fraction is equal to multiplying the number by its reciprocal.
  • For dividing a number by mixed fraction, first, convert the mixed fraction into an improper fraction and then solve it.

 Ex: TS VII maths Fraction, Rational numbers 11

1.Division of a whole number by a fraction: –

TS VII maths Fraction, Rational numbers 12

2.Division of a fraction by another fraction: –

TS VII maths Fraction, Rational numbers 13

   Decimal number or fractional decimal:

In a decimal number, a dot(.) or a decimal point separates the whole part of the number from the fractional part.

The part right side of the decimal point is called the decimal part of the number as it represents a part of 1. The part left to the decimal point is called the integral part of the number.

Note: –

  • while adding or subtracting decimal numbers, the digits in the same places must be added or subtracted.
  • While writing the numbers one below the other, the decimal points must become one below the other. Decimal places are made equal by placing zeroes on the right side of the decimal numbers.
Comparison of decimal numbers:

while comparing decimal numbers, first we compare the integral parts. If the integral parts are the same, then compare the decimal part.

Ex: – which is bigger: 13.5 or 14.5

Ans: 14.5

Which is bigger: 13.53 or 13. 25

Ans: 13.53

Multiplication of decimal numbers:

For example, we multiply 0.1 × 0.1For example, we multiply 0.1 × 0.1

TS VII maths Fraction, Rational numbers 14

Multiplication of decimal numbers by 10, 100, and 1000: –

ts vii math multiplication of decimal by 10 100 1000

Here, we notice that the decimal point in the product shifts to the right side by as many zeroes as in 10, 100, and 1000.

Division of decimal number:

Division of decimal number by 10,100 and 1000: –

ts vii division of decimal number by 10 100 1000

Here, we notice that the decimal point in the product shifts to the left side by as many zeroes as in 10, 100, and 1000.

Rational numbers:

 The numbers which are written in the form of p/q, where p, q are integers, and q ≠ 0, are called rational numbers.

Rational numbers are a bigger collection of integers, negative fractional numbers, positive fractional numbers.

Ex: – 1, 2, -1/2, 0 etc.


3. SIMPLE EQUATIONS

Equation: Equation is the condition of a variable. It says that two expressions are equal.

  • An equation has two sides LHS and RHS, on both sides of the equality of sign.
  • One of the expressions of the equation is must have a variable.
  • If we interchange the expressions from LHS to RHS, the equation remains the same

Ex: – x + 2 = 5; 2 = x + 3

Balanced equation:

In an equation, if LHS =RHS, then that equation is balanced.

If the same number is added or subtracted on both sides of the balanced equation, the equation remains will the same.

Ex: 8 + 3 = 11

If add 2 on both sides ⇒ LHS = 8 + 3 + 2 = 13

RHS = 11 + 2 = 13

∴ LHS = RHS

8 +3 = 11 if subtract 2 on both sides

LHS = 8 + 3 – 2 = 9

RHS = 11 – 2 = 9

∴ LHS = RHS

ts vii maths tansposing rules

Using algebraic equations in solving day to day problems:
  1. Read the problem carefully.
  2. Denote the unknown or quantity to be found with some letters such as x, y, z …etc.
  3. Write the problem in the form of an algebraic equation by making a relation among the quantities.
  4. Solve the equation.
  5. Check the solution

4. LINES AND ANGLES

Complimentary angles: When the sum of the angles is 900, the angles are called complementary angles.

Ex: 300, 600; 200, 700 and soon.ts vii math complementary angleSupplementary angles: When the sum of the angles is 1800, the angles are called  Supplementary angles.

Ex: 1200, 600; 1100, 700 and soon.

ts vii math supplimentary angles

Adjacent angles: The angle having a common Arm and a common vertex are called Adjacent angles.

TS VII MATH ADJACENT ANGLES

⇒ ∠AOC and ∠BOC adjacent angles.

Vertically opposite angle: If two lines are intersecting at a point, then the angles that are formed opposite to each other at that point are called vertically opposite angles.

TS VII MATH VERTICALLY OPPOSITE ANGLES
Transversal: A line that intersects two or more lines at distinct points is called a transversal.

ts vii math transversal

Angles made by a transversal:

Corresponding angles: 

Two angles that lie on the same side of the transversal and one interior and another one exterior are called corresponding angles.

∠1, ∠5; ∠2, ∠6; ∠3, ∠7 and ∠4, ∠8ts vii math angles made by transversal

Alternate angles: 

Two angles which are the lies opposite side of the transversal and both interior or exterior are called Alternate angles.

∠1, ∠7; ∠2, ∠8 are exterior alternate angles

∠3, ∠5; ∠4, ∠6 are interior alternate angles.

∠3, ∠6; ∠4, ∠5 interior angles same side of the transversal.

Transversal on parallel lines:

If pair of parallel lines are intersected by a transversal then the angles of each pair of corresponding angles are equal

⇒ ∠1, =∠5; ∠2= ∠6; ∠3= ∠7 and ∠4= ∠8ts vii math transversal on parallel lines

•If pair of parallel lines are intersected by a transversal then the angles of each pair of interior alternate angles are equal.

∠3= ∠5; ∠4= ∠6

•If pair of parallel lines are intersected by a transversal then the angles of each pair of exterior alternate angles are equal.

∠1= ∠7; ∠2= ∠8

•If pair of parallel lines are intersected by a transversal then the angles of each pair of interior angles on the same side of the transversal are supplementary.

∠3+∠6= 1800; ∠4+ ∠5 = 1800

Note:

1.If a transversal intersects two lines and the pair of corresponding angles are equal, then the lines are parallel.

2.If a transversal intersects two lines and the pair of alternate angles are equal, then the lines are parallel.

3.If a transversal intersects two lines and the interior angles on the same side of the transversal are supplementary, then the lines are parallel.


5. TRIANGLE AND ITS PROPERTIES


Triangle:
 A closed figure formed by three-line segments is called a triangle.

   In ∆ABC,

  • ts vii math triangleABCThree sides are TS VII maths Triangles 1
  • Three angles are ∠ABC, ∠BCA, ∠ACB
  • Three vertices are A, B, C.

Classification of triangles:

Triangles can be classified according to the properties of their sides and angles.

According to sides:

Based on sides triangles are three types:

  • Scanlan triangle (ii) Isosceles Triangle (iii) equilateral triangle

According to angles:

  • Acute-angled triangle (ii) Right-angled triangle (iii) Obtuse-angled triangle

TS VII MATH CLASSIFICATION OF TRIANGLES

Relationship between the sides of a triangle:

  1. The sum of the lengths of any two sides of a triangle is greater than the third side.

                 ts vii math sum of two sides is grater than the third side

  1. The difference between the lengths of any two sides of a triangle is less than the third side.

            TS vii maths difference of two sides is less than the third side

The altitude of a triangle:

ts vii maths altitude of a triangle
We can draw three altitudes in a triangle.
A perpendicular line drawn from a vertex to its opposite side of a triangle is called the Altitude of the triangle.

Median of a triangle:

ts vii math median of a triangle
In a triangle, a line drawn from the vertex to the mid-point of its opposite side is called the median of the triangle.                                                                                   

Medians of a triangle are concurrent. We can draw three medians in a triangle.ts vii math centroid of triangle

The point of concurrence of medians is called the centroid of the triangle. It is denoted by G

Angle-sum property of a triangle:
Some of the angles in a triangle is 1800

∠A + ∠B + ∠C = 1800

An exterior angle of a triangle:

When one side of the triangle is produced, the angle thus formed is called an exterior triangle.

Exterior angle property:- The exterior angle of a triangle is equal to the sum of two interior opposite angles. ts vii maths exterior angle sum property

x0+ y0 = z0

 


6.RATIO – APPLICATIONS

Ratio: Comparison of two quantities of the same kind is called ‘Ratio.

The ratio is represented by the symbol ‘:’

If the ratio of two quantities ‘a’ and ‘b’ is a : b, then we read this as ‘a is to b’

The quantities ‘a’ and ‘b’ are called terms of the ratio.

Proportion: if two ratios are equal, then they are said to be proportional.
‘a’ is called as first term or antecedent and ‘b’ is called a second term or consequent.

If a: b = c : d, then a, b, c, d are in proportion and TS VII Maths Ratios 1  ⇒ ad = bc.

TS VII Maths Ratios 2

The product of means = the product of extremes

Unitary method:  The method in which we first find the value of one unit and then the value of the required no. of units is known as the unitary method.

Direct proportion: In two quantities, when one quantity increase(decreases) the other quantity also increases(decreases) then two quantities are in direct proportion.

Percentages:

‘per cent’ means for a hundred or per every hundred. The symbol % is used to denote the percentage.

1% means 1 out of 100, 17% means 17 out of 100.

Profit and Loss:  

Selling price = SP; Cost price = CP

If SP > CP, then we get profit

Profit = SP – CP

Profit percentage =

SP = CP + profit

If SP < CP, then we get a loss

Loss = CP – SP

Loss percentage = TS VII Maths Ratios 5

SP = CP – Loss 

Simple interest:

Principle: – The money borrowed or lent out for a certain period is called the Principle.

Interest: – The extra money, for keeping the principle paid by the borrower is called interest.

Amount: – The amount that is paid back is equal to the sum of the borrowed principal and the interest.

Amount = principle + interest

Interest (I) = TS VII Maths Ratios 4  where R is the rate of interest.


7.DATA HANDLING

Data: The information which is in the form of numbers or words and helps in taking decisions or drawing conclusions is called data.

Observations: The numerical entries in the data are called observations.

Arithmetic Mean: The average data is also called an Arithmetic mean.

Arithmetic Mean (A.M) =TS VII Maths Data Handling 1

The arithmetic mean always lies between the highest and lowest observations of the data.

When all the values of the data set are increased or decreased by a certain number, the mean also increases or decreases by the same number.

Mode: The most frequently occurring observation in data is called Mode.

If data has two modes, then it is called bimodal data.

Note: If each observation in a data is repeated an equal no. of times, then the data has no mode.

Median: The middlemost observation in data is called the Median.

Arrange given data in ascending or descending order.

If a data has an odd no. of observations, then the middle observation is the median.

If a data has even no. of observations, then the median is the average of middle observations.

Bar graph:

Bar graphs are made up of uniform width which can be drawn horizontally or vertically with equal spacing between them.

The length of each bar tells us the frequency of the particular item.

Ex:

TS VII Maths Data Handling 2Double bar graph:

It represents two observations side by side.

Ex:

TS VII Maths Data Handling 3

 Pie chart: A circle can be divided into sectors to represent the given data

The angle of each sector =  TS VII Maths Data Handling 4

Ex:

BudgetAmount in rupees
Food1200
Education800
Others2000
Savings5000
Total income9000

S VII Maths Data Handling 5


8.CONGRUENCY OF TRIANGLES

Congruent figures: Two figures are said to be congruent if they have the same shape and size.

TS VII Maths Congruency of Triangles 1

Congruency of line segments:  If two-line segments have the same length, then they are congruent. Conversely, if two-line segments are congruent, then they have the same length.

TS VII Maths Congruency of Triangles 2

 Congruency of Triangles:

Two triangles are said to be congruent if (i) their corresponding angles are equal (ii) their corresponding sides are equal.
Ex: In ∆ ABC, ∆ DEF TS VII Maths Congruency of Triangles 3

∠A ≅ ∠D; ∠B≅ ∠E; ∠C ≅ ∠F

AB ≅ DE; BC≅ EF; AC ≅ DF

∴∆ABC ≅ ∆DEF

The criterion for congruency of Triangles:

1.Side -Side -Side congruency (SSS): –      
If three side of a triangle is equal to the corresponding three sides of another triangle, then the triangles are congruent.

TS VII Maths Congruency of Triangles 4

∴∆ABC ≅ ∆DEF

2.Side -Angle -Side congruency (SAS): –    
If two sides and the angle included between the two sides of a triangle are equal to the corresponding two sides and the included angle of another triangle, then the triangles are congruent.

TS IX Maths Triangles 6

  ∴ ∆ABC ≅ ∆DEF

3.Angle – Side -Angle congruency (ASA): –       
If two angles and included side of a triangle are equal to the corresponding two angles and included side of another triangle, then the triangles are congruent.

TS VII Maths Congruency of Triangles 6

∴ ∆ABC ≅ ∆DEF

4.Right angle – Hypotenuse – Side congruence (RHS): –

 If the hypotenuse and one side of a right-angled triangle are equal to the corresponding hypotenuse and side of the other right-angled triangle, then the triangles are Equal.

TS VII Maths Congruency of Triangles 7

∴∆ABC ≅ ∆DEF


9.CONSTRUCTION OF TRIANGLES

The no. of measurements required to construct a triangle = 3

A triangle can be drawn in any of the situations given below:

  • Three sides of a triangle
  • Two sides and the angle included between them.
  • Two angles and the side included between them.
  • The hypotenuse and one adjacent side of the right-angled triangle.

Construction of a triangle when measurements of the three sides are given:

Ex: construct a triangle ABC with sides AB = 4cm, BC = 7cm and AC = 5cm

Step of constructions:

Step -1: Draw a rough sketch of the triangle and label it with the given measurements.

TS VII Maths Construction of Triangles 1

Step -2: Draw a line segment of BC of length 7cm.

TS VII Maths Construction of Triangles 2

Step -3: with centre B, draw an arc of radius 4cm, draw another arc from C with radius 5cm such that it intersects first at A.

Step -4: join A, B and A, C. The required triangle ABC is constructed.

TS VII Maths Construction of Triangles 3

Construction of a triangle when two sides and the included angle given:

EX: construct a triangle ABC with sides AB = 4cm, BC = 6cm and ∠B=600

Step of constructions:

Step -1: Draw a rough sketch of the triangle and label it with the given measurements.

TS VII Maths Construction of Triangles 4

Step -2: Draw a line segment of AB of length 4cm.

TS VII Maths Construction of Triangles 6

Step -3: draw a ray BX making an angle 600 with AB.

TS VII Maths Construction of Triangles 5 new

 

Step -4: draw an arc of radius 5cm from B, which cuts ray BX at C.

TS VII Maths Construction of Triangles 7

Step -5: join C and A, we get the required ∆ABC.

TS VII Maths Construction of Triangles 8

Construction of a triangle when two angles and the side between the angles given:

Ex: construct a triangle PQR with sides QR = 4cm, ∠Q= 1200 and ∠R= 400

Step of constructions:

Step -1: Draw a rough sketch of a triangle and label it with the given measurements.

TS VII Maths Construction of Triangles 23

Step -2: Draw a line segment QR of length 4 cm.

TS VII Maths Construction of Triangles 10

Step -3: Draw a ray RX, making an angle 400 with QR.

TS VII Maths Construction of Triangles 11

Step -4: Draw a ray QY, making an angle 1000 with QR, which intersects ray RX.

Step -5: Mark the intersecting point of the two rays as P. Required triangle PQR is constructed.

TS VII Maths Construction of Triangles 12

Construction of a triangle when two sides and the non-included angles are given:

Ex: construct a triangle MAN with sides MN = 4cm, AM = 3cm and ∠A= 400

Step of constructions:

Step -1: Draw a rough sketch of a triangle and label it with the given measurements.

TS VII Maths Construction of Triangles 13

Step -2: Draw a line segment MA of length 0f 5cm.

TS VII Maths Construction of Triangles 14

Step -3: Draw a ray AX making an angle 400 with the line segment MA.

Step -4: With M as the centre and radius 3 cm draw an arc to cut ray AX. Mark the intersecting point as N.

TS VII Maths Construction of Triangles 16

Step -5: join M, N, then we get the required triangle MAN.

TS VII Maths Construction of Triangles 17

Construction of a right-angled triangle when hypotenuse and sides are given:

Ex: construct a triangle ABC, right angle at B and AB = 4cm, Ac = 5cm  

Step of constructions:
Step -1: Draw a rough sketch of a triangle and label it with the given measurements.

TS VII Maths Construction of Triangles 18

Step -2: Draw a line segment BC of length 0f 4cm.

TS VII Maths Construction of Triangles 19

Step -3: Draw a ray BX perpendicular to BC at B

Step -4: Draw an arc from C with a radius of 5cm to intersect ray BX at A.

TS VII Maths Construction of Triangles 20

Step -5: Join A, C, then we get the required triangle ABC.

TS VII Maths Construction of Triangles 21

 


10.ALGEBRAIC EXPRESSIONS

Variable: It is a dependent term. It takes different value.

Ex: m, x, a, etc.

Constant:  It is an independent term. It has a fixed value.

Ex: 1, 3,TS VII Maths Algebraic Expressions 1  etc.

Like terms and Unlike terms: If the terms contain the same variable with the same exponents, then they are like terms otherwise, unlike terms.

Ex: 3x, –4x, x are like terms

3x, 4y, 4 are unlike terms

Coefficient: Coefficient is a term which the multiple of another term (s)

EX: In 5x. 5 is the coefficient of x and x is the coefficient of 5

5 is a numerical coefficient

x is the literal coefficient

Expression: An expression is a single term or a combination of terms connected by the symbols ‘+’ (plus) or ‘−’ (minus).

Ex: 2x – 3. 3x, 2 +3 – 4 etc.

Numerical Expressions:  If every term of an expression is constant, then the expression is called numerical expression.

Ex: 2 + 3 + 5, 2 – 4 – 7, 1 + 5 – 4 etc.

Algebraic expression:  If an expression at least one algebraic term, then the expression is called an algebraic expression.

Ex: x + y, xy, x – 3, 4x + 2 etc.

Note: Plus (+) and Minus (−) separate the terms

Multiplication (×) and Division (÷) do not separate the terms.

Types of Algebraic expressions:

Monomial: – If an expression has only one term, then it is called a monomial.

Ex: 2x2, 3y, x, y, xyz etc.

Binomial: If an expression has two unlike terms, then it is called binomial.

Ex: 2x+ 3y, x2+ y, x +yz2 etc.

Trinomial: If an expression has three unlike terms, then it is called trinomial.  Ex: 2x+ 3y + 4xy, x2+ y + z, x2 y +yz2 + xy2 etc.

Multinomial: If an expression has more than three unlike terms, then it is called multinomial.

Ex: 2x+ 3y + 4xy +5, x2+ y + z – 4y + 6 ,

x2 y +yz2 + xy2 – 4xy + 8yz etc.

Degree of a monomial: The sum of all exponents of the variables present in a monomial is called the degree of the monomial. 

  Ex: Degree of 5xy3  

An exponent of x is 1 and an exponent of y is 3 

Sum of exponents = 1 + 3 = 4

∴ degree of 5xy3 is 4

Degree of an Algebraic Expression: The highest exponent of all the terms of an expression is called the degree of an Algebraic expression.

      Ex: degree of x2 + 3x + 4x3 is 3

degree of 3xy + 6x2y + 5x2y2 is 4

Addition of like terms:

The sum of two or more like terms is a like term with a numerical coefficient that is equal to the sum of the numerical coefficients of all the like terms in addition.

Ex: 3x + 2x = (3 + 2) x = 5x

4x2y + x2y = (4 + 1) x2y = 5x2y

Subtraction of like terms:  

The difference of two like terms is a like term with a numerical coefficient is equal to the difference between the numerical coefficients of the two like terms.

Ex: 3x − 2x = (3 − 2) x = x

4x2y −2 x2y = (4 −2) x2y = 2x2y

Note: (i) addition and subtraction are not done for unlike terms. (ii) If no terms of an expression are alike then it is said to be in the simplified form.

The standard form of an Expression:

In an expression, if the terms are in such a way that the degree of the terms is in descending order, then the expression is said to be in standard form.

Ex: 5 – 2x2 + 4x +3x3

Standard form is 3x3 – 2x2 + 4x + 5

Finding the value of an expression:

Example: find the value of expression x3 + y + 3, when x = 1 and y = 2

Sol: given expression is x3 + y + 3

Substitute x = 1 and y = 2 in above expression

(1)3 + 2 + 3 = 1 + 2 + 3 = 6

Addition of algebraic expressions:

The addition of expressions can be obtained by adding like terms.

This is in two ways: (i) Column or Vertical method (ii) Row or Horizontal method.

Column or Vertical method:

Step –1: Write the expression in standard form if necessary.

Step –2: write one expression below the other such that the like terms come in the same column.

Step –3: Add the like terms column-wise and write the result just below the concerned column.

Ex: Add x2 + 3x + 5, 3 – 2x + 3x2 and 3x – 2

Sol:         TS VII Maths Algebraic Expressions 2        

Row or Horizontal method.

Step –1: Write the expression in standard form if necessary.

Step –2:  Re-arrange them term by grouping the like terms.

Step –3: Simplify the coefficients.

Step –4: Write the resultant expression in standard form.

   Ex: Add x2 + 3x + 5, 3 – 2x + 3x2 and 3x –2

Sol: (x2 + 3x + 5) + (3 – 2x + 3x2) + (3x –2)

= (x2 + 3x2) + (3x – 2x + 3x) + (5 + 3 – 2)

= (1 + 3) x2 + (3 – 2 + 3) x + 6

=4x2 + 4x + 6

Additive inverse of an expression:

For every algebraic expression there exist another algebraic expression such that their sum is zero. These two expressions are called the additive inverse of each other.

Subtraction of algebraic expressions:

This is in two ways: (i) Column or Vertical method (ii) Row or Horizontal method.

Column or Vertical method:

Step –1: Write the expression in standard form if necessary.

Step –2: write one expression below the other such that the expression to be subtracted comes in the second row and the like terms come one below the other.

Step –3: Change the sign of every term of the expression in the second row to get the additive inverse of the expression.

Step –4: Add the like terms column-wise and write the result just below the concerned column.

Ex: Subtract: x2 + 3x + 5 from 3x2 + 4x – 3

Sol:

 TS VII Maths Algebraic Expressions 3

 

 

Row or Horizontal method:

Step –1: Write the expressions in one row with the expression to be subtracted in a bracket with assigning a negative sign to it.

Step –2:  Add the additive inverse of the second expression to the first expression.

Step –3: Group the like terms and add or subtract.

Step –4: Write the resultant expression in standard form.

 Ex: Subtract: x2 + 3x + 5 from 3x2 + 4x – 3

Sol:   3x2 + 4x – 3 – (x2 + 3x + 5)

= 3x2 + 4x – 3 – x2 – 3x – 5

= (3 – 1) x2 + (4 – 3) x + (– 3 – 5)

= 2x2 + x – 8

 


11.EXPONENTS

We know that,

a × a = a2 (a raised to the power of 2)

a × a × a = a3 (a raised to the power of 3)

a × a × a × a × a × a ×…. m times = am

am is in exponential form

a is called base, m is called exponent or index.

Laws of exponents:

  • am × an = am + n
  • TS VII Maths Algebraic Expressions 1
  • (am)n = amn
  • am = an ⇒ m = n
  • (ab)m = am.an
  • a0 = 1
  • TS VII Maths Algebraic Expressions 2
  • TS VII Maths Algebraic Expressions 3

Standard form:  A number that is expressed as the product of the largest integer exponent of 10 and a decimal number between 1 and 10 is said to be in standard form.

Ex: 1324 in standard form is 1.324 × 103.

 


12.QUADRILATERALS

Quadrilateral: A Quadrilateral is a closed figure with four sides, four angles and four vertices.

In Quadrilateral ABCD

TS VII Maths Quadrilaterals1

  • AB, BC, CD, and AD are sides.
  • A, B, C and D are the vertices.
  • ∠ABC, ∠BCD, ∠CDA and ∠DAC are the angles.

Diagonal of a Quadrilateral:

The line segment joining the opposite vertices of a quadrilateral are called the diagonals of the Quadrilateral. In the above figure AC, BD is the diagonals.

Adjacent sides of a Quadrilateral:

The two sides of a Quadrilateral that have a common vertex are called the adjacent sides of the Quadrilateral. From the above figure, AB, BC; BC, CD; CD, DA and DA, AB are the adjacent sides.

Adjacent angles of a Quadrilateral:

The two angles of a Quadrilateral that have a common side are called the adjacent angles of the Quadrilateral. From the above figure, ∠A, ∠B; ∠B, ∠C; ∠C, ∠D and ∠D, ∠A is the adjacent angles.

Opposite sides of a Quadrilateral:

The two sides of a quadrilateral, which do not have a common vertex are called opposite sides of a quadrilateral. From the above figure, AB, CD; BC, DA are the opposite sides.

Opposite angles of a Quadrilateral:

The two angles of a quadrilateral, which do not have a common side are called opposite angles of a quadrilateral. From the above figure, ∠A, ∠C; ∠B, ∠D are the opposite angles.

Interior and exterior of a Quadrilateral:

TS VII Maths Quadrilaterals2

In a Quadrilateral ABCD, S, N are interior points, M, P are exterior points and A, B, C, D and Q are lies on the Quadrilateral.

Convex Quadrilateral:

A Quadrilateral is said to be a convex Quadrilateral if all line segments joining points in the interior of the Quadrilateral also lie in the interior of the Quadrilateral.

TS VII Maths Quadrilaterals3

Concave Quadrilateral:

A Quadrilateral is said to be a concave Quadrilateral if all line segments joining points in the interior of the Quadrilateral not lie in the interior of the Quadrilateral.

TS VII Maths Quadrilaterals4

Angle sum property of a quadrilateral:

The Sum of the angle in a Quadrilateral is 3600

TS VII Maths Quadrilaterals 5

In a Quadrilateral ABCD, ∠A + ∠B + ∠C + ∠D = 3600

Types of Quadrilaterals:

1.Trapezium:

In a Quadrilateral, one pair of opposite sides are parallel then it is Trapezium.

TS VII Maths Quadrilaterals6

In a Trapezium ABCD, AB∥ DC; AC, BD are diagonals.

2.Kite:

In a Quadrilateral two distinct consecutive pairs of sides are equal in length then it is called a Kite.

TS VII Maths Quadrilaterals 7

In a Kite ABCD, AB = BC; AD = DC AC, BD are diagonals.

3.Parallelogram:

In a Quadrilateral, two pairs of opposite sides are parallel then it is Parallelogram.

TS VII Maths Quadrilaterals 8

In a Parallelogram ABCD, AB∥ DC, AD∥ BC; AD, BD are diagonals.

Properties of parallelogram: –

  • The opposite sides of a parallelogram are equal in length.
  • The opposite angles are equal in measure.
  • The sum of the adjacent angles is 1800
  • Diagonals are bisected to each other and not equal in length.

4.Rhombus:

In a parallelogram in which two adjacent sides are equal, then it is a Rhombus.

TS VII Maths Quadrilaterals 9

In a Parallelogram ABCD, AB∥ DC, AD∥ BC; AD, BD are diagonals.

Properties of Rhombus: –

  • All sides of a Rhombus are equal in length.
  • The opposite angles are equal in measure.
  • The sum of the adjacent angles is 1800
  • Diagonals are bisected to each other perpendicularly and not equal in length.

5.Rectangle:

In a parallelogram all angles are equal, then it is a Rectangle.

TS VII Maths Quadrilaterals 10

Properties of Rectangle: –

  • The opposite sides are equal in length.
  • Each angle is 900.
  • The sum of the adjacent angles is 1800
  • Diagonals are bisected to each other and not equal in length.
  • Each diagonal divides the rectangle into two congruent triangles.

6.Square:

In a rectangle adjacent sides are equal, then it is a Square.

TS VII Maths Quadrilaterals 11

Properties of Square: –

  • All sides of a square are equal in length.
  • Each angle is 900.
  • The sum of the adjacent angles is 1800
  • Diagonals are bisected to each other and equal in length.
  • Each diagonal divides the square into two congruent triangles.

 


13.AREA AND PERIMETER

Area of a parallelogram:

TS VII Maths Area and Perimeter 1
Area of parallelogram (A) = b × h square units.

The area of the parallelogram is equal to the product of its base (b) and the height(h)

Area of a Triangle:

TS VII Maths Area and Perimeter 2
Area of triangle = ½ b × h square units.

The area of the triangle is equal to half the product of its base (b) and height (h).

In a Right-angled triangle, two of its sides can be the height.
Area of a Rhombus:

TS VII Maths Area and Perimeter 3

The area of the Rhombus is equal to half the product of its diagonals

Area of rhombus = ½ d1 × d2 square units.

Circumference of the circle:

TS VII Maths Area and Perimeter 4

Circumference of circle = 2πr = πd

Area of the rectangular path:

TS VII Maths Area and Perimeter 5

Area of Rectangular path = area of the outer rectangle – are of the inner rectangle

 


14. UNDERSTANDING 2D AND 3D SHAPES

Net: Net is a short of skeleton-outline in 2d, which when folded the result in 3d shape.

Nets of 3D shapes:

1.Cube:

TS VII maths Understanding 2D and 3D Shapes1               TS VII maths Understanding 2D and 3D Shapes 2

2.Cylinder:

TS VII maths Understanding 2D and 3D Shapes 3                TS VII maths Understanding 2D and 3D Shapes 4

 3.Pyramid:

TS VII maths Understanding 2D and 3D Shapes5    TS VII maths Understanding 2D and 3D Shapes6

Oblique Sketches:

Oblique sketches are drawn on a grid paper to visualise 3D shapes.

Ex: Draw an oblique sketch of a 3×3×3 cube

TS VII maths Understanding 2D and 3D Shapes1

Step-1: Draw the front face

TS VII maths Understanding 2D and 3D Shapes 7

Step-2: Draw the opposite face, which is the same as the front face. The sketch is somewhat offset from Step-1

TS VII maths Understanding 2D and 3D Shapes 8

Step-3: Join the corresponding corners.

TS VII maths Understanding 2D and 3D Shapes 9

Step-4: Redraw using dotted lines for hidden edges.

TS VII maths Understanding 2D and 3D Shapes 10

Isometric Sketches:

Isometric sketches are drawn on a dot isometric paper to visualise 3D shapes.

Ex: Draw an oblique sketch of a 2×3×4 cuboid

TS VII maths Understanding 2D and 3D Shapes 14

Step-1: Draw a rectangle to show the front face.

TS VII maths Understanding 2D and 3D Shapes 11

Step-2:  Draw four parallel line segments of length 3cm.

TS VII maths Understanding 2D and 3D Shapes 12

 Step-3: Connect the corresponding corners with appropriate line segments

TS VII maths Understanding 2D and 3D Shapes 13

 Step-4: This is an isometric sketch of a cuboid

TS VII maths Understanding 2D and 3D Shapes 15

 

 


15.SYMMETRY

Line of symmetry: The line which divides a figure into two identical parts is called the line of symmetry or axis of symmetry.

TS VII maths Symmetry 1

An object can have one or more than one lines of symmetry.

Regular polygon:

If a polygon has equal sides and equal angles, then the polygon is called a Regular polygon.

Lines of symmetry for Regular polygons:

Regular polygonNo. of sidesNo. of axes of symmetry
Triangle33
Square44
Pentagon55
Polygonnn

 Rotational symmetry: If we rotate a figure, about a fixed point by a certain angle and the figure looks the same as before, then the figure has rotational symmetry.

The angle of rotational symmetry:  The minimum angle of rotation of a figure to get the same figure as the original is called the angle of rotational symmetry or angle of rotation.

The angle of rotation of the equilateral triangle is 1200

The angle of rotation of a square is 900

Order of rotational symmetry:

The no. of times a figure, rotated through its angle of rotational symmetry before it comes to the original position is called the order of rotational symmetry.

The order of rotational symmetry for an equilateral triangle is 3.

The order of rotational symmetry for a square is 4.

Note: All figures have rotational symmetry of order 1, as can be rotated completely through 3600 to come back to its original position.

An object has rotational symmetry, only when the order of symmetry is more than 1.

• Some shapes have a line of symmetry and some have rotational symmetry and some have both.

Square, Equilateral triangle and Circle have both line and rotational symmetry.

  

 


Visit my Youtube Channel: Click on Below Logo

AS_Tutorioal_Png

TS VI CL;ASS MATHS CONCEPT FEATURE IMAGE

TS 6 th class Maths Concept || Basics In Maths


6th maths notes|| TS 6 th class Maths Concept

Studying maths in the 6th  class successfully meaning that children take responsibility for their own learning and learn to apply the concepts to solve problems.

This note is designed by the ‘Basics in Maths’ team. These notes to do help students fall in love with mathematics and overcome fear. 


1. KNOWING OUR NUMBERS

•  Number: A number is a mathematical object used to count and measure.1,2,3…….etc.

Comparing numbers:

• We can compare the numbers by counting the digits in the numbers.

• Now Compare   5432 and 4678…

5432 is greater as the digits at the ten thousand place in 5432 is greater than that in  4678.

Order of numbers:

• Ascending Order: –

arrange the numbers from smallest to the greatest; this order is called Ascending order.

 Ex:- 23, 44, 65, 79, 100

• Descending Order: –

arrange the numbers from greatest to the smallest, this order is called Ascending order.

 Ex:- 100,79, 65, 33, 23

Formations of numbers

• Form the largest and smallest possible numbers using the digits 3, 2, 4, 1 without repetition

• Largest number formed by arranging the given digits in descending order _ 4321. 

• Smallest number formed by arranging the given digits in ascending order _ 1234.

• Greatest two-digit number is 99.

• Greatest three-digit number is 999.

• Greatest four-digit number is 9999.

 Place value

• Place value is the positional notation, which defines the position of a digit.

  Ex:- 3458     

8 is one place, 5 is tens place, 4 is hundreds place and 3 is thousands place.

Expanded form

• It refers to expand the numbers to see the value of each digit.

Ex :- 3458 = 3000 + 400 + 50 + 8

                    = 3×1000 + 4×100 + 5×10 + 8×1

• Note:-

        1 hundred = 10 tens

       1 thousand = 10 hundreds

      1 lakh = 100 thousands = 1000 hundreds   

Reading and Writing the numbers

Place value table for Indian system :

place value table 1

Example: Represents the number in 6,35,21,892 in place value table

placevalue table 2

Place value table for International system :

place value table 3 Ex:- represents the number in 635,218,924 in place value table

place value table 4

Use of commas:

• Indian system of numeration:- in the Indian system of numeration we use ones, tens, hundreds, thousands, lakhs and crores. The first comma comes after three digits from the right, the second comma comes two digits latter and the third comma comes after another two digits.E

Ex:-  “three crores thirty-five lakh seventeen thousand four hundred thirty” can be written as.3,35,17,430

• International system of numeration:- in the International system of numeration we use ones, tens, hundreds, thousands, millions and billions. 

Ex:- “ six hundred thirty-five million two hundred eighteen thousand nine hundred twenty-four” can be written as 635,218,924.

       Note:-10 millimetres = 1centimeter

                     100 centimetres = 1 meter

                    1000 meters = 1 kilometer

                   1000 milligrams = 1 gram

                    1000 grams = 1 kilo gram


2. WHOLE NUMBERS

Natural numbers: All the counting numbers starting from 1 are called Natural numbers.

                   1, 2, 3… Etc.

 Successor and Predecessor: If we add 1 to any natural number, we get the next number, which is called the Successor. If we subtract 1 from any natural number, we get the previous number, which is called Predecessor.

   Ex: – successor of 23 is 24 and predecessor of 32 is 31.

Note:- There is no predecessor of 1 in natural numbers.

Whole numbers: Whole numbers are the collection of natural numbers.

     0, 1, 2, 3 …

Representation of whole number on the number line:

• Draw a line mark a point on it.

number line for whole numbers

• Label it as ‘0’

• Mark as many points at equal distance to the right of 0.

• Label the points as 1, 2, 3, 4, … respectively.

• The distance between any two consecutive points is the unit distance.

  Addition on the number line:
  •  The distance between 2 and 4 is 2 units, like as the distance between 2 and 6 is 4 units
  • The number on the write is always greater than the number on the left
  • The number on the left of any number is always smaller than that number

        Addition of the whole number can represent on the number line

        Ex:-  3 + 2 = 5

       Start from three, we add 3 to 2. We make two jumps to the right of the number line as shown above. We reach at 5.

 Subtraction on the number line:

      Subtraction of the whole number can be represented on the number line


        Ex :-5 – 3 = 2

     Start from 5, we subtract 3 from 5. We make three jumps to the left of the number line shown as above. We reach at 2.

Multiplication on the number line:

NUMBER LINEFor multiplying 2 and 3, start from 0, make 2 jumps using 3 units at a time to the right, as you reach to 6. Thus, 2 × 3 =6.

Properties of whole numbers

Closer property: Two whole numbers are said to be closed if their operation (+, -, ×,÷) is always closed.

Addition:-Whole numbers are closed under addition.

Ex: 3, 2 are whole numbers ⟹ 3 + 2 = 5 ( 5 is whole number)

Subtraction:- Whole numbers are not closed under subtraction as their difference not always a whole number.

Ex:- 2 – 3 = −1 ( −1 is not a whole number)

Multiplication:- Whole numbers are closed under multiplication.

Ex:- 3 × 2 = 6, 6 is a whole number.

Division:- Whole numbers are not closed under division, as their division is not always a whole number.

Ex:-  3 ÷ 2 is not a whole number.

Commutative property: Two whole numbers are said to be commutative if the result is the same when we change their position.

Addition:-Whole numbers are commutative under addition.

Ex: 3, 2 are whole numbers ⟹ 3 + 2 = 5 and 2 + 3 = 5 ( 3 + 2 = 2 + 3).

Subtraction:- Whole numbers are not commutative under subtraction.

Ex:- 2 – 3 = −1 and 3 – 2 = 1( 2 −3 ≠ 3 – 2 ).

Multiplication:- Whole numbers are commutative under multiplication.

Ex:- 3 × 2 = 6 and 2 ×3 = 6 (3 × 2 = 2 ×3)

Division:- Whole numbers are not commutative under division.

Ex:-  3 ÷ 2  ≠ 2 ÷ 3.

Associative property: For any three whole numbers a, b and c if (a ⨀ b)⨀ c = a ⨀ (b ⨀ c), then whole numbers are associative under operation ⨀. [ ⨀ = +, –, × and ÷ ].

Addition:-Whole numbers are associative under addition.

Ex: ( 3 + 2) + 5 = 10 and  3 + (2 + 5) = 10 ⟹ ( 3 + 2) + 5 =   3 + (2 + 5)

Subtraction:- Whole numbers are not associative under subtraction.

Ex:- : ( 3 − 2) − 5 = −4  and  3 − (2 − 5) = 6 ⟹ ( 3 + 2) + 5 ≠3 + (2 + 5)

Multiplication:- Whole numbers are associative under multiplication.

Ex:- (3 × 2) ×5 = 30 and 3 ×(2 × 5) = 30  ⟹  (3 × 2) ×5 =  3 ×(2 × 5)

Division:- Whole numbers are not associative under division.

Ex:-  ( 3 ÷ 2) ÷ 5 ≠3 ÷ (2 ÷ 5).

Distributive property:

For any three whole numbers a, b and c, a×(b + c) = (a × b) +( a × c).

Note :Division by zero is not defining.

Identity under addition and multiplication:

        2 +0 = 2, 5 + 0 = 5 and so on.

      Thus, 0 is the additive identity.

      2 ×1 = 2, 4 × 1 = 4 and so on.

      Thus, 1 is a multiplicative identity.

Patterns:

  • Every number can be arranged as a line. The number 2 is shown as       patter2

         The number 3 as shown aspattern e

 

  • Some numbers can be shown as rectangles. 8 can be shown as

pattern 8

 

  • Some numbers can be arranged as squares. 9 can be shown as

pattern9

  • Some numbers can be shown as triangles.

       3 can be shown as          triangle number 3               6 can be shown as

triangle form 6

 


3. PLAYING WITH NUMBERS

Divisibility Rule:

The process of checking whether a number is divisible by a given number or not without actual division is called divisibility rule for that number.

Divisibility by 2:- a number is divisible by 2 if its once place is either 0, 2, 4, 6 or 8.

Ex:- 26 is divisible by 2. 35 not divisible by 2.

Divisibility by 3:- if the sum of the digits of a number is divisible by 3, then that number is divisible by 3.

Ex:- 231 → 2 + 3 +1 =6, 6 is divisible by 3

        ∴ 231 is divisible by 3

        436 → 4 + 3 + 6 = 13, 13 is not divisible by 3

∴ 436 is not divisible by 3.

Divisibility by 4:- if the last two digits of a number is divisible by 4, then that number is divisible by 4.

Ex:- 436, 36 is divisible by 4            ∴ 436 is divisible by 4

        623, 23 is not divisible by 4      ∴ 623 is not divisible by 4.

Divisibility by 5:- a number is divisible by 5, if its once place is either 0 or 5.

Ex:- 20, 25 are divisible by 5. 22, 46 are not divisible by 5.

Divisibility by 6:- a number is divisible by 6, if it is divisible by both 3 and 2.

Ex:-  242 is divisible by both 2 and 3     ∴ 242 is divisible by 6

          232 is divisible by 3 but not 2        ∴ 232 is not divisible by 6

Divisibility by 8:- if the last three digits of a number is divisible by 8, then that number is divisible by 8.

Ex:- 4232, last three digits 232 are divisible by 8

                     ∴ 4232 is divisible by 8.

Divisibility by 9:- if the sum of the digits of a number is divisible by 9, then that number is divisible by 9.

Ex:-  459, 4 + 5 + 9 = 18 → 18 is divisible by 9       ∴ 459 is divisible by 9

          532, 5 + 3 + 2 = 10 → 10 is not divisible by 9       ∴ 532 is not divisible by 9.

Divisibility by 10:- a number is divisible by 10 if its once place is 0.

Ex:- 20 is divisible by 10. 22, 45 are not divisible by 10.

Divisibility by 11:- A number is divisible by 11 if the difference between the sum of the digits at odd places and the sum of the digits at even places is either 0 or 11.

Ex:- 6545

     Sum of the digits at odd places = 5 + 5 = 10

    Sum of the digits at even places = 4 + 6 = 10

    Now difference is 10 – 10 = 0

     ∴ 6545 is divisible by 11.

Factors: a number which divides the other number exactly is called a factor of that number.

6 = 1×6

   = 2×3      ⟹  factors of 6 are: 1, 2, 3 and 6

Note- 1)1 is a factor of every number.

             2) Every number is a factor of itself.

             3) Every factor is less than are equal to the given number.

             4) Factors of a given number are countable.

Prime numbers: The numbers, which have only two factors 1, and itself are called prime numbers.

2, 3, 5, 7, …. Are prime numbers

Composite numbers: The number, which has more than two factors are called composite numbers.

4, 6,8,9….. are composite numbers.

  • Note: – 1) 1 is neither prime nor composite

             2) 2 is the smallest prime number

             3) 4 is the smallest composite number.

Co – prime number: The number which has no common factor except 1 is called co-prime number.

Ex:- (2, 3), (4,5) ……

Twin – primes: If the difference of two prime numbers is 2, then those numbers are called twin prime numbers.

Ex:- (2,3), (3,5), (17,19)…..

Factorization: When a number is expressed as the product of its factors, we say that the number has been factorized. The process of finding the factors is called Factorisation.

Ex:-  factors of 24 are: 1, 2, 3, 4, 6, 8, 12 and 24

           24 = 1 × 24 = 2 × 12 = 3 × 8 = 4 × 6

Prime factorisation: The process of finding the prime factors is called prime factorisation.

Ex:- 24 = 2 × 12

                   2 × 3 × 4

                   2 × 3 × 2 × 2

∴ Prime factorisation of 24 is 2 × 2 × 2 × 3.

Methods of prime factorization: 

Division method:- Prime factorization of 12 using the division method,      

fallow the procedure.                                                                                                 

                                                                                                                                                  DIVISION METHOD

Start dividing by the least prime factor. Continue division till the resulting number to be divided is 1.

The prime factorization of 12 is 2 × 2 × 3.

Factor tree method:- To find the prime factorization of 24, using the factor tree method we proceed as follows:

  • Express 24 as a product of two numbers.
  • FACTOR TREE METHODFactorise 4 and 6 further, since they are composite numbers.               
  • Continue till all factors are prime numbers.                                                                                                                            
  •  The prime factorization of 24 is 2 × 2 × 2 × 3.

Common factors: Common factors are those numbers, which are factors of all the given numbers.

Ex:- 12, 9

          Factors of 12 are:  1, 2, 3, 4, 6 and 12

           Factors of 9 are:  1, 3 and 9

∴ Common factors of 12, 9 are 1,3

Highest Common Factor (H.C.F):- The highest common factor of two or more numbers is the highest of their common factors. It is also called ad Greatest Common Divisor(G.C.D).

Ex:- H.C.F of 12, 9

         Factors of 12 = 1, 2, 3,4, 6, 12

         Factors of 9 = 1, 3, 9

Common factors of 12, 9 = 1,3

Highest common factor is 3

∴ H.C.F of 12, 9 is 3

Method of finding HCF:
Prime factorization method:

The HCF of 9 , 12 can be found by the prime factorization method as follows.

9 = 3  × 3

     12 =3 ×  2× 2                                                                                                                              PRIME FACTORISATION METHOD

The common factor of 12, 9 is 3

 ∴ H.C.F of 12, 9 is 3

Continue division method:

Euclid invented this method. Divide the larger number by smaller and then divide the previous divisor by the remainder until the remainder zero. The last divisor is the HCF of given numbers.

HCF OF DIVISION METHOD

Common multiple multiples of 3 are 3, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39,42…

Multiples of  4 are 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52….

Common multiples of 3 and 4 are  12, 24, 36….

Least common multiple (LCM):- The least common multiple of two or more given numbers is the lowest of their common multiple.

Ex:- LCM of 3 and 4

  Multiples of 3 =    3, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39,42…

 Multiples of 4 =   4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52….

Common multiples of 3 and 4 =  12, 24, 36….

∴ LCM of 3, 4 is 12.

Methods of finding LCM:

1.    Prime factorization method:-  the LCM of  6, 15 by using prime factorization method is as follows:

i)  Express each number as the product of prime factors

Prime factors of 6 =   2 × 3

Prime factors of 15 = 5× 3

ii)  Take the common factors both: 3

iii)  Take the extra factors of both 6 and 15 i.e., 2 and 5

iv)  The product of all common factors of two numbers and extra common factors of both finds LCM.

           ∴ LCM of 6 and 15 = (3) × 2 × 5 = 30.

2.    Division method:- To find LCM of 6 and 15:

i.    Arrange the given numbers in a row.

ii.  Then divide the least prime number, which divides at least two of the given numbers, and carry forward the numbers, which are not divisible by that number if any.

iii.Repeat the process till no numbers have a common factor other than 1.

iv. LCM is the product of the divisors and the remaining numbers.

Ex:-  

LCM1

                            ∴ LCM of 6, 15 = 3 × 2 × 5 = 30.

 Note:-  the product of LCM and HCF of given numbers = the product of given numbers.

            Ex:- 6 × 15 = 30 × 3 = 90.


4.BASIC GEOMETRICAL IDEAS

The term ‘geometry’ is derived from the Greek word ‘geometron’.

  Geo means Earth and metron means measurement.

Point: Point is a location or position on the surface of the plane. It is denoted by capital letters of the English alphabet. 

ts vi math poin

Line: It is made up of infinitely many points with infinity length.

ts vi math line

It is denoted by TS vi maths line AB

Ray: Ray is a part of a line. It begins at a point and goes on endlessly n a specific direction.

ts vi math ray

It is denoted by TS vi maths ray AB                                                
Line segment: It is a part of the line with the finite length.   ts vi math linesegment

It is denoted by TS vi maths line segment AB

Intersecting lines: If two lines are meeting at the same point, then those lines are called intersecting lines. That pint is called the point of intersection.ts vi math intersecting lines

Parallel lines: The lines, which are never meet at any point, are called parallel lines. ts vi math paralel lines

Curve: Anything, which is not straight, is called Curve.

Simple curve: – A curve that does not cross itself.ts vi math simple curve

 Open curve: – A curve in which its endpoints do not meet.ts vi math open curve

 Closed curve: – A curve that has no endpoint is called a closed curve.ts vi math closed curve

∗ A closed curve has three parts

The Interior of the curve: – It refers to the inside area of the curve. (B)ts vi math parts of closed curve

The exterior of the curve: – It refers to the outside area of the curve. (A)

On the curve: – It refers to the inside area of the curve. (C)

Polygon: – polygon is a simple closed figure made by line segments.

ts vi class polygon

Angle: the figure formed by two rays having a common end is called an angle.ts vi math angle

Here two rays OA, OB are arms of the angle

O is the Vertex. It is denoted by ∠AOB or ∠ BOA.

Triangle: A simple closed figure formed by the three line segments is a triangle. The line segments are called sides of the triangle.

ts vi math triangle

  • AB, BC and AC are sides of a triangle.
  • A,  Band C are vertices of a triangle.
  • ∠ABC, ∠BAC and ∠ACB are angles of the triangle.
  • This triangle is denoted by ∆ABC.

Quadrilateral: A simple closed figure formed by the four-line segments is a Quadrilateral.

  • AB, BC, CD and DA are the sides of the quadrilateral.ts vi math quadrilateral
  • A, B, C and D are the vertices of the quadrilateral.
  • ∠A, ∠B, ∠C and ∠D are the angles of quadrilateral.
  • AB, DC and BC, AD are opposite sides of the quadrilateral.
  • AB, BC; AD, DC; DC, BC and AD, AB are adjacent sides( the sides which have common vertex are called adjacent sides)
  • A, C and B, D are opposite vertices and also opposite angles.
  • AC and BD diagonals of a rectangle (A line segment joining opposite vertices is called diagonal).

Circle: The set of points that are at a constant distance from a fixed point is called a circle. The fixed point is called the centre of the circle and the constant distance is called the radius of the circle.ts vi math circle

  • O is the center of the circle.
  • OA, OB, and OC radii of the circle
  • AB is the diameter of the circle.
  • PQ is a chord.

Circumference of the circle: – the length of the boundary of the circle is called the circumference of the circle.

Arc: – The part of the circumference is called Arc. From the above fig.  is an arc.APisarc.s vi math sector and segment

Sector: – Region enclosed by an arc and two radii is called a sector.

Segment: – The region enclosed by arc and chord is called a segment of the circle.

 


5. MEASURES OF LINES AND ANGLES

Measure of line segment:

  • A line segment is a part of the line with two endpoints.
  • This makes it possible to measure a line segment.
  • This measure of each line segment is its ‘length’.
  • We use length to compare line segments.
  • We can compare the length of two line segments by: (i) simple observation (ii) tracing on a paper and (iii) using instruments.

Simple observation: – We can tell which line segment is greater than other just by observing the two-line

segments but it is not sure.vi math compare line segments

Here we can clearly say that CD > AB but sometimes it is difficult to tell which one is greater.

Tracing on a paper: – In this method we have to trace one line on paper then put the traced line segment on the other line to check which one is greater.

But this is a difficult method because every time to measure the different size of line segments we have to make a separate line segment.

Comparing by instruments: – To compare any two-line segments accurately, we use ruler(scale) and divider.

∗ We can use a ruler to measure the length of a line segment.vi math comparing by istruments

Put the zero mark at point A and then move toward l to measure the length of the line segment, but it may have some errors based on the thickness of the ruler.

∗ This could be made accurate by using a Dividervi math comparing by istruments-1

  • Put the one end of the divider on point A and open it to put another end on point B.
  • Now pick up the divider without disturbing the opening and place it on the ruler so that one end lies on “0”.
  • Read the marking on the other end and we can compare the two line.

Measure of an angle: Angle is formed two rays or two-line segments.

  • We can understand the concept of right and straight angles by directions.vi math measure of angle
  • There are four directions-North, South, East and West.
  • When we move from North to East then it forms an angle of 90°, which is called Right Angle.

 

  • When we move from North to South then it forms an angle of 180°, which is called Straight Angle.
  • When we move four right angles in the same direction then we reach to the same position again i.e. if we make a clockwise turn from North to reach to North again then it forms an angle of 360°, which is called a Complete Angle. This is called one revolution.

∗ In a clock, there are two hands i.e. minute hand and hour hand, which moves clockwise in every minute. When the clock hand moves from one position to another then turns through an angle.

  • When a hand starts from 12 and reaches to 12 again then it is said to be completed avi math measure of angle - clock
  • s were the ray moves in the opposite direction of the hands of a clock are called anti – clockwise angles. These are denoted by positive measure.
  • Angles were the ray moves in the direction of the hands of a clock are called clockwise angles. These are denoted by negative measure.

The protractor:vi math the protractor

  • By observing an angle we can only get the type of angle but to compare it properly we need to measure it.
  • An angle is measured in the “degree”. One complete revolution is divided into 360 equal parts so each part is one degree. We write it as 360° and read as “three hundred sixty degrees”.
  • We can measure the angle using a ready to use device called Protractor. 
  • It has a curved edge, which is divided into 180 equal parts. It starts from 0° to 180° from right to left and vice versa.

∗To measure an angle 72° using protractor-ts vi class measure of angle 72 degrees

  • Place the protractor on the angle in such a way that the midpoint of protractor comes on the vertex B of the angle.
  • Adjust it so that line BC comes on the straight line of the protractor. 
  • Read the scale, which starts from 0° coinciding with the line BC. 
  • The point where the line AB comes on the protractor is the degree measure of the angle.

                Hence, ∠ABC = 72°.

Types of angles:

Type of angle

Measure

Zero angle

Right angle

90°

Straight angle

180°

Complete angle

360°

Acute angle

Between 0° to 90°

Obtuse angle

Between 90° to 180°

Reflex angle

Between 180° to 360°

 

Perpendicular Linesvi math perpendicular lines

If two lines intersect with each other and form an angle of 90° then they must be perpendicular to

 


6.INTEGERS

There several situations in our daily life, where we use these numbers to represent loss or profit; past or future; low or high temperature. The numbers on the left side of zero are called negative numbers.

     TS VI INTEGERS BASICS ON NUMBER LINE

Integers: The numbers which are positive, zero and negative numbers together are called as integers and they re denoted by I or Z.

                      Z = {…, -3, -2, -1, 0, 1, 2, 3…}.

Representation of integers on a number line: –

TS VI MATH REPRESENTATION OF INTEGERS ON THE NUMBER LINE

  • The numbers which are on the right side of zero are positive numbers and which are on the left side of zero are negative numbers.
  • 0 is neither positive nor negative.
  • On a number line, the number increases as we move to right and decrease as we move to the left.

     ∴ -3 < -2 <   -1 <   0   < 1 <   2   < 3 <   4   <  5  so on.

  • Note: – 1. Any positive integer is always greater than any negative integer
  1. Zero is less than every positive integer.
  2. Zero is greater than every negative integer.
  3.   Zero doesn’t come in any of the negative and positive integers.

Addition and subtraction of integers:

1.If two integers have same sign, then add the integers and put that sign before the result.

Ex: – 3 + 2 =5, −3 – 2 = −5.

2.If two integers have different sign, then subtract smaller one from bigger and put the bigger one sign before the result.

Ex: – 3 − 2 =1, −3 + 2 = −1, −10 + 5 = −5.

Addition of integers on a number line:

Add 3 and 4

TS VI MATH ADDITION OF INTEGERS ON A NUMBER LINE

  • On the number line, we first move three steps to the right of 0 to reach 3, then we move 4 steps to the right of 3 and to reach 7

               ∴ 3 + 4 = 7                                                                                                                                                                  
Add −3 and −4

TS VI MATH ADDITION OF INTEGERS ON A NUMBERLINE 1

  • On the number line, we first move three steps to the left of 0 to reach −3, then we move 4 steps to the left of −3 and to reach −7.

∴ − 3 − 4 = −7

∗ Any two distinct numbers that give zero when added to each other are additive inverse each other.

Subtraction of integers on a number line:

Subtract 3 from 6

TS VI MATH SUBTRACTION OF INTEGERS ON A NUMBER LINE

  • On the number line, we first move 6 steps to the right of 0 to reach 6, then we move 3 steps to the left of 6 and to reach 3.

∴ 6 − 3 = 3.

Subtract −3 from 6

 

   On the number line, we first move 6 steps to the right of 0 to reach 6. For – 3 we have to move left but for – ( −3) we move in the opposite direction. Thus, we move 3 steps to the left of 6 and to reach 9.

∴ 6 – (−3) = 9.

• Subtraction of integers is the same as the addition of their additive inverse.


7. FRACTIONS AND DECIMALS

A fraction means a part of a group of a whole.

The ‘whole’ here could be an object or the group of objects. But all the parts of the whole must be equal. The ‘whole’ here could be an object or the group of objects. However, all the parts of the whole must be equal.

TS vi Math fractions and decimals 1

• Fig(i) is the whole. The complete circle.

• In Fig (ii), we divide the circle into two equal parts, then the shaded portion is the half ie., TS vi Math fractions and decimals 2of the circle.

• In Fig (iii), we divide the circle into three equal parts, then the shaded portion is the one third of the circle i.e.,TS vi Math fractions and decimals 3 of the circle.

• In Fig (iv), we divide the circle into four equal parts, then the shaded portion is the one fourth of the circle i.e.,TS vi Math fractions and decimals 4 of the circle.

The numerator and the denominator:

TS vi Math fractions and decimals 5

The upper part of the fraction is called ‘numerator’. It tells the no. of parts we have.

The lower part of the fraction is called ‘denominator’. It tells the total parts in whole.

Representing fractions pictorially:

TS vi Math fractions and decimals 9

Representing fractions on a number line:

Mark TS vi Math fractions and decimals 7 on a number line

TS vi Math fractions and decimals 8

Proper fractions: In a fraction if the numerator is less than denominator then, then it is called proper fraction. If we represent a proper fraction on a number line then it is always lies between 0 and 1.

Ex: –TS vi Math fractions and decimals 10

Improper fractions: In a fraction if the numerator is greater than denominator then, then it is called improper fraction.

Ex: –TS vi Math fractions and decimals 11

Mixed fractions: – The fraction made by the combination of whole number and a part is called mixed fraction.

Ex: –TS vi Math fractions and decimals 12

Note: Only improper fractions can be represented as mixed fractions.

A mixed fraction is in the form of TS vi Math fractions and decimals 13

We can convert it into improper fraction by  TS vi Math fractions and decimals 14

Ex: –   TS vi Math fractions and decimals 15

Equivalent fractions: – Equivalent fractions those fractions which represent the same part of whole.

TS vi Math fractions and decimals 16

  • Equivalent fractions are arising when we multiply both the numerator and denominator by the same number.
  • Equivalent fraction of TS vi Math fractions and decimals 2 are TS vi Math fractions and decimals 17   and so on

Standard form of a fraction (simplest or lowest form):- A fraction is said to be in standard form if both the numerator and denominator of that fraction have no common factor except 1.

Ex: –TS vi Math fractions and decimals 18

Like and Unlike fractions: The fractional numbers that have the same denominators are called fractional numbers and have not the same denominator are called unlike fractions.

Ex: –  TS vi Math fractions and decimals 19 are like fractions and TS vi Math fractions and decimals 20 are un like fractions.

Comparing fractions:

Like fractions: – We have to compare the like fractions with the numerator only, because the like fractions have same denominator. The fraction with greater numerator is greater and the fraction with smaller numerator is smaller.

Ex: – TS vi Math fractions and decimals 21 and so on.

Unlike fractions: –

With same numerator: For comparing unlike fractions, we have to compare denominators when the numerator is same. The fraction with greater denominator is smaller and the fraction with smaller denominator is smaller.

Ex: – TS vi Math fractions and decimals 22 and so on.

Note: – To find the equivalent fractions of both the fractions with the same denominator, we have to take the LCM of their denominators.

Ascending order and Descending order: –

When we write numbers in a form that they increase from the left to right then they are in the Ascending order. When we write numbers in a form that they decrease from the left to right then they are in the Descending order.

Ex: – For fractions: TS vi Math fractions and decimals 23are in ascending order and TS vi Math fractions and decimals 24are in descending order.       

Addition of fractions:

 Like fractions: –

TS vi Math fractions and decimals 25

Ex:  TS vi Math fractions and decimals 27TS vi Math fractions and decimals 26

Un like fractions: – For adding unlike fractions, first we have to find the equivalent fraction of given fractions and then add them as like fractions.

Ex: – TS vi Math fractions and decimals 28TS vi Math fractions and decimals 29

Subtraction of fractions 

Like fractions: –                            

TS vi Math fractions and decimals 30

Ex: –  TS vi Math fractions and decimals 31

Un like fractions: – First we have to find the equivalent fraction of given fractions and then subtract them as like fractions.

Ex: –TS vi Math fractions and decimals 32

Decimal fractions:

A fraction where the denominator is a power of ten is called decimal fraction. We can write decimal fraction with a decimal point (.). it makes easier to do addition, subtraction and multiplication on fractions.

Ex: – TS vi Math fractions and decimals 33


8. DATA HANDLING

Data: collection of information in the form of numbers or words is called data.

Recording data: Recording of data depends on the requirement of the data. We can record data in different ways.

Organization of data: –

  • Data is difficult to read.
  • We have to organize it.
  • Data can be organized in a tabular form.
  • Data is represented in tabular form using frequency distribution and the tally marks.
  • Frequency tells the no. of times the observations is happened.
  • Tally marks show the frequency of the data.

∗ Example for representing tally marks:

TS vi Math Data handling 1

Pictograph:

If the data is represented by the picture of objects instead if numbers, then it is called pictograph. Pictures make it is easy to understand the data and answer the questions to related it by observing the pictures.

Example for representing data by pictograph

TS vi Math Data handling 2

  • Drawing a pictograph is difficult to draw some difficult pictures.
  • For understanding every one, e must use proper symbols.
Bar graph:

• Bar graphs are used to represent the independent observations with frequencies.

• In a bar graph, bars of uniform width are drawn horizontally or vertically with equal spacing between them.

Construction of bar graph: – 

TS vi Math Data handling 3  TS vi Math Data handling 4

Steps to construction: –

1.Draw two perpendicular lines one horizontal (x – axis) and one vertical (y – axis).

2.Along the x- axis mark ‘items’ and along the x – axis mark ‘cost of items’.

3.Select a suitable scale 1cm = 10(rupees).

4.Calculate the heights of the bars by dividing the frequencies with the scale

70 ÷ 10 = 7, 40 ÷ 10 = 4 and so on.

5.Draw rectangular vertical bars of same width on the x- axis with heights calculated above.


9. INTRODUCTION TO ALGEBRA

Algebra is the use of letters or symbols to represent number. It helps us to study about un known quantities.

Patterns:

To make a triangle, 3 matchsticks are used   TS vi Math Introduction to Algebra 1

For making 2 triangles we have six matchsticks  TS vi Math Introduction to Algebra 2

For making 3 triangles we have nine matchsticksTS vi Math Introduction to Algebra 3

  • of matchsticks required for making 1 triangle = 3 = 3 × 1
  • of matchsticks required for making 2 triangles = 6 = 3 × 2
  • of matchsticks required for making 3 triangles = 9 = 3 × 3

Thus the no. of matchsticks for making ‘n’ triangles = 3 × n = 3n. 

Variable: Variable is a unknown quantity that may change. It is a dependent term.

In the above pattern, the rule is 3n, here ‘n’ is the variable.

  • We can use lower case alphabets are used as variable.
  • Numbers cannot use as variables, since they have fixed value.
  • Variables help us to solve other problems also.
  • Variables can take different values; they have no fixed value.
  • Mathematical operations addition, subtraction, multiplication and division can be done on the variables.

Use of variables:

perimeter of a polygon is the sum of the lengths of all its sides.

 Perimeter square = 4s, s is the variable

 Perimeter of rectangle = 2 (l + b); l, b are variables.

To find the nth term from the given pattern: 3, 6, 9…

         Number

3

6

9

12

15

       Pattern

3×1

3×2

3×3

3×4

3×5

From the table we observe that, the first number is 3×1, the second number is 3×2, the third number is 3×3 and so on.

∴ the nth term of pattern 3, 6, 9, 12, = 3n, here n is variable.

Simple equation: simple equation is a condition to be satisfied by the variables. Equation has equality sign between its two sides.

Ex: 5m = 10, 2x + 1 = 0 etc.

L.H.S and R.H.S of an equation:

The expression which is at the left of equal sign of an equation is called Left Hand Side (L.H.S)

The expression which is at the right side of equal sign of an equation is called Right Hand Side (R.H.S)

Ex: 4y = 20

L.H.S = 4y and R.H.S = 20

Solution of an equation (Root of the equation):

Solution or Root of an equation is the values of variable for which L.H.S and R.H.S are equal.

Ex: 3x = 15  

        If x = 5; LHS = 3×5 = 15

       RHS = 15

       ∴ solution of above equation is 5

Trial and error method:

By using this method, we get the solution of given equation.

Ex: solve 2n = 10

Substituting value of n

Value of L. H. S

Value of R. H. S

Whether LHS and RHS are equal

1

2×1 = 2

10

Not equal

2

2×2 = 4

10

Not equal

3

2×3 = 6

10

Not equal

4

2×4 = 8

10

Not equal

5

2×5 = 10

10

 Equal

When n = 5, LHS = RHS ∴ solution of equation is 5.


10. PERIMETER & AREA

Perimeter: Perimeter is the distance covered along the boundary forming a closed figure when you go around the figure once.
Perimeter of a Rectangle:

TS vi Math Perimeter and Area 1

Length of the rectangle = l, breadth = b

Perimeter of rectangle = sum of the lengths of its sides.

                                             = l + l +b + b

P = 2 (l + b) units.

Perimeter of a Square:   

TS vi Math Perimeter and Area 2                                

Length of the side  of a square   = a

Perimeter of rectangle = sum of the lengths of its sides.

                                           = a + a + a + a

                                         = 4a units.

Perimeter of an Equilateral Triangle:              

TS vi Math Perimeter and Area 3                 

Length of each side   = a

Perimeter of rectangle = sum of the lengths of its sides.

                                           = a + a + a

                                           = 3a units.

Polygon: A polygon is a simple closed figure bounded by line segments.

Regular polygon: A polygon which has equal side and equal angles, is called Regular polygon.

The perimeter of regular polygon of ‘n’ sides whose length ‘a’ = na.

Area: The amount of surface enclosed by a closed figure is called its area.

 Area of a Rectangle:

TS vi Math Perimeter and Area 1

Length of the rectangle = l, breadth = b

Area of the Rectangle = l × b square units.

Area of a Square:

TS vi Math Perimeter and Area 2

Length of the side of a square   = a

Area of a Square = a × a = a2 square units.

Note:  The area of the square is more than the area of any other rectangle having the same perimeter.


PDF Files || Inter Maths 1A &1B || (New)

TS 10th Class Maths Concept (T/M)

TS 10th class maths concept (E/M)Ts Inter Maths IA Concept

11. RATIO AND PROPORTION

Ratio:  Ratio is the comparison of two quantities of same kind.

 The ratio of two quantities a and b is written as a: b and read as ‘a is to b’.

 ‘a’ is called first term or antecedent and ‘b’ is called second term or consequent.

Simplest form of ratio:

If a ratio is written in terms of whole numbers with no common factors other than 1, then the ratio is said to be in the ‘simplest form’ or in the ‘lowest terms’.

Ex: the simplest form of 5 : 15 is 1 : 3.

Division of a given quantity in a given ratio:

Let us suppose that, if a quantity ‘c’ divided into two parts in the ratio a: b, then

Total parts = a + b

First part =TS vi math Ratio and proportion 1and second part =TS vi math Ratio and proportion 2

Ex: Divide 1200 in the ratio 2 : 3

Ans: Total parts = 2 + 3 = 5

 First part = TS vi math Ratio and proportion 3= 2 × 240 = 480

Second part =TS vi math Ratio and proportion 4  = 3× 240 = 720.

Proportion:

Equalities of ratios is called proportion.

If a : b = c : d, then a ,b ,c and dare in proportion. This is represented as a : b ∷ c : d.

If a, b, c and d are in proportion, then ad = bc.

Unitary method:

 In this method, first we find the value of one unit and then the value of the required number of units.

Ex: If the cost of 5 pens is ₹ 20, then find the cost of 12 pens.

Sol:  Given that cost of 5 pens = ₹20

                               Cost of one pen = 20 ÷ 5= 4

                                Cost of 12 pens = 4 × 12 = 48

     ∴ cost of 12 pens = ₹ 48.  


12. SYMMETRY

Symmetry:

The word symmetry comes from Greek word. It means ‘to measure together’.

Symmetry is the mirror image of an object.

Symmetry means that one object becomes exactly like another when we move it in some way: turn, flip or slide.
Ex:

TS vi math Symmetry 1

Line of symmetry:

A line along which you can fold a figure so that two parts of it coincide exactly is called a ‘line of symmetry’.

Line of symmetry can be horizontal, vertical or diagonal.

Ex:

TS vi math Symmetry 2

TS vi math Symmetry 3The English alphabet which have

  • Vertical line of symmetry: A, H, I, M, O, U, V, W and X
  • Horizontal line of symmetry: B, C, D, E, H, I, K, O and X
  • No line of symmetry: D, G, J, L, N, P, Q, R, S, Y AND Z.

13. PRACTICAL GEOMETRY

The following instruments from a geometry box are used to construct figures:

1.A Ruler (Scale)

2.The compasses

3.The divider

4.Protractor

∗ The ruler is used to measure lines.

∗ The compasses is used for constructing.

∗ The protractor is used for measuring angles.

∗ Divider is used to make equal line segments or mark point on a line.

Construction of a line segment of a given length:

We can construct a line segment in two ways: 1) By using Ruler 2) By using the Compasses

1.By using Ruler: –

Let us suppose we want to draw a line segment AB of length 3.5 cm

TS vi math Practical Geometry 1

Steps of construction: –

Step-1: Place the ruler on a paper and hold it firmly.

Step-2: Mark a point with sharp edged pencil against ‘0cm’ mark of the ruler.

Step-3: Name the point as A. Mark another point against 5 small divisions just after the 3cm mark. Name this point as B

Step-4: Join A and B along the edge of the ruler. AB is the required line segment of length 3.5cm.

1.By using the Compasses: –

  Let us suppose we want to draw a line segment AB of length 3.5 cm


Steps of construction: –

Step-1: draw a line l. Mark a point on the line l.

TS vi math Practical Geometry 3
Step-2:
place the metal pointer of the compasses on the zero mark of the ruler. open the compasses so that the pencil point touches the 3.5cm mark on the ruler.

TS vi math Practical Geometry 2

Step-4: on the line l, we got the line segment AB of length 3.5cm.

TS vi math Practical Geometry 5
Step-3:
place the pointer on A on the line l and draw arc to cut the line. Mark the point where the arc cuts the line as B.

Construction of a circle:

  Let us suppose we want to draw a circle of radius 3 cm

TS vi math Practical Geometry 6

Steps of construction: –

Step-1: Open the compasses for radius 3 cm

Step-2: Mark a point with sharp edged pencil. This is the centre.

Step-3: Place the pointer of the compasses firmly at the centre.

Step-4: Without moving its metal point, slowly rotate the pencil and till it come back to the straight point.

Construction of perpendicular bisector a line segment:

Steps of construction: –

Step-1: Draw a line segment AB.TS vi math Practical Geometry 7
Step-2:
Set the compasses as radius more than half of the length of line segment AB.
TS vi math Practical Geometry 8
Step-3: With A as centre, draw arcs below and above the line segment

TS vi math Practical Geometry 9

 Step-4: With same radius and B as the centre draw two arcs above and below the line segment to cut the previous arcs. Name the intersecting points of arcs as M and N.

TS vi math Practical Geometry 10

Step-5: Join the points M and N. then, the line MN is the required perpendicular bisector of the line segment AB.

Construction of perpendicular to a line, through a point which is not on it:

Steps of construction: –

Step-1: Draw a line l and a point A not on it TS vi math Practical Geometry 11

Step-2: With A as centre draw an arc which intersects the given line at two points M and N.

TS vi math Practical Geometry 12

 Step-3: Using the same radius and with M and N as centres construct two arcs that intersect at a point B on the other side of the line.

TS vi math Practical Geometry 13Step-4: Join A and B. AB is the perpendicular of the given line l.     

TS vi math Practical Geometry 14Construction of Angles using Protractor:

Let us suppose we want to construct ∠ABC = 500

Steps of construction: –
Step-1:
Draw a ray BC of any length.TS vi math Practical Geometry 15

Step-2: Place the centre point of the protractor at B and the line aligned with theTS vi math Practical Geometry 16

Step-3: Mark a point A at 500

TS vi math Practical Geometry 17Step-4: join AB. ∠ABC is the required angle.

Constructing a copy an of Angle of un known measure:

Let ∠A is given, measure is not known

Steps of construction: –
Step-1:
Draw a line TS vi math Practical Geometry 4 and choose a point A on it.TS vi math Practical Geometry 18

Step-2: Now place the compasses at A and draw an arc to cut the rats AC and AB.

TS vi math Practical Geometry 20
Step-3:  Use the same compasses setting to draw an arc with P as centre, cutting l at Q.

TS vi math Practical Geometry 21

Step-4: Set your compasses with BC as the radius.

TS vi math Practical Geometry 22

Step-5: Place the compasses pointer at Q and draw an arc to cut the existing arc at R.

                      TS vi math Practical Geometry 23                                                                                       

Step-6: Join PR. It has the same measure as ∠BAC.TS vi math Practical Geometry 24

Construction to bisect a given angle:

Let an angle say ∠AOB be given

Steps of construction: – TS vi math Practical Geometry 25

Step-1: With O as the centre and ray convenient radius, draw an arc PQ cutting OA and OB at P and Q respectively.

TS vi math Practical Geometry 27

Step-2: With P as the centre and any radius slightly more than half of the length of PQ, draw an arc in the interior of the given angle.

TS vi math Practical Geometry 26

Step-3: With Q as the centre and without alternating radius draw another arc in the interior of ∠AOB.

                Let two arcs intersects at S

TS vi math Practical Geometry 28

Step-4: Draw ray , thenTS vi math Practical Geometry 29 is the bisector of ∠AOB

                Observe ∠AOS = ∠SOB

CONSTRUCTION ANGLES OF SPERCIAL MEASURES:

Construction of 600 angle: –

Steps of construction: –

Step-1: Draw a line l and mark a point O on it. TS vi math Practical Geometry 30

Step-2: Place the pointer at O and draw an arc of convenient radius which cuts the line at P (say).

TS vi math Practical Geometry 31

Step-3:  With the centre P and the same radius as in the step-2. Now draw an arc that passes through O.

Step-4:  Let the two arcs intersects at Q. Join OQ. We get ∠POQ = 600.

Construction of 1200 angle: –
Steps of construction: –

Step-1: Draw a ray OATS vi math Practical Geometry 34

Step-2: Place the pointer of the compasses at O. With O as the centre and any convenient radius draw an arc cutting OA at P.

TS vi math Practical Geometry 35

Step-3: With P as the centre and the same radius as in the step-2 draw an arc which cuts the first arc at Q.

TS vi math Practical Geometry 36Step-4: With Q as the centre and the same radius as in the step-2 draw an arc which cuts the first arc at R.

TS vi math Practical Geometry 37

Step-5: Join OR. Then ∠POR = 1200.


14. UNDERSDTANDING 3D AND 2D SHAPES


Cuboid:
3D- shapes or Solids:

The object which have a length, breadth and height (or depth) are called ‘three dimensional’ or ‘3D- shapes’ or ‘Solids’.

Cuboid:TS vi math 3D and 2D shapes 1

Objects like match boxes, erasers are the examples for cuboid

A cuboid has 6- Faces, 8- Vertices and 12 – Edges

Cube:TS vi math 3D and 2D shapes 2

A dice is an Example for cube.

A cube has 6- Faces, 8- Vertices and 12 – Edges

Cylinder:TS vi math 3D and 2D shapes 3

Objects like wooden log, a piece of pipe are the examples for cylinder

the top and base of the cylinder are circular in shape.

Cone:TS vi math 3D and 2D shapes 4

joker cap is the example for cone

base of the cone is a circle.

Sphere:TS vi math 3D and 2D shapes 5

Balls, laddoos are the examples for globe.

Triangular prism:TS vi math 3D and 2D shapes 6

If the base of a prism is triangle, then it is called triangular prism.

 

Pyreamid:

A pyramid is a solid shape with a base and point vertex.TS vi math 3D and 2D shapes 7

If a pyramid has triangular base, then it is called triangular pyramidTS vi math 3D and 2D shapes 8

If a pyramid has  square base, then it is called square pyramid.

Polygon: A polygon is a closed figure made with linesegments.

RegularPolygon: A polygon with all equal sides and all equal angles is called a regular polygon.


 

 


Visit My Youtube Channel:  Click  on below  logo

 

 

AS_Tutorioal_Png

TS 10th class maths concept

TS 10th class maths concept (E/M)

TS 10th class maths concept

Studying mathematics successfully meaning that, children take responsibility for their own learning and learn to apply the concepts to solve problems.

This note is designed by the ‘Basic In Maths’ team. These notes to do help students fall in love with mathematics and overcome fear.


1. REAL NUMBERS

• Rational number: The number, which is written in the form of p/q where p,q are integers q not equal to zero is called a rational number. It is denoted by Q.

• Irrational numbers:- the number, which is not rational is called an irrational number. It is denoted by Q’ or S.

• Euclid division lemma:- For any positive integers a and b, then q, r are integers exists uniquely satisfying the rules a = bq + r, 0 ≤ r < b.

• Prime number:- The number which has only two factors 1 and itself is called a prime number. (2, 3, 5, 7 …. Etc.)

• Composite number:- the number which has more than two factors is called a composite number. (4, 6, 8, 9, 10,… etc.)

• Co-prime numbers:- Two numbers  said to be co-prime numbers if they have no common factor except 1. [Ex: (1, 2), (3, 4), (4, 7)…etc.]

• To find HCF, LCM by using prime factorization method:  H. C.F= product of the smallest power of each common prime factors of given numbers. L.C.M = product of the greatest power of each prime factor of given numbers.

  • In p/q, if prime factorisation of q is in form 2m 5n, then p/q is terminating decimal. Otherwise non-terminating repeating decimal.
  • Decimal numbers with the finite no. of digits is called terminating Decimal numbers with the infinite no. of digits is called non-terminating decimal. In a decimal, a digit or a sequence of digits in the decimal part keeps repeating itself infinitely. Such decimals are called non-terminating repeating decimals.

• ‘p’ is a prime number and ‘a’ is a positive integer, if p divides a2, then p divides a.

• If ax = N then x = {log_{a}}^{N}

(i) log (xy) = log(x) + log(y)  (ii) log (x/y) = log( x) – log( y) (iii) log (xm ) = m log (x)

 

 

Loader Loading...
EAD Logo Taking too long?

Reload Reload document
| Open Open in new tab

 

 

Pair Of Linear Equations In two Variables Concept and Solutions: Click Here


TS 10th class maths concept

 

FOR MORE CONCEPT   click here for pdf file

 


Visit My Youtube Channel: Click on Below Logo

AS_Tutorioal_Png

 


 

 

 

ICSE 8th Maths Concept

ICSE 8th Maths Concept| Basics In Maths

3.SQUARES AND SQUARE ROOTS, CUBES AND CUBE ROOTS

Square:  Square number is the number raised to the power 2. The number obtained by the number multiplied by itself.

Ex: – 1) square of 5 = 52 = 5 × 5 = 25, 2) square of 3 = 32 = 3× 3 = 9

∗If a natural number p can be expressed as q2, where q is also natural, then p is called a square number.

Ex: – 1,4,9, …etc.

Test for a number to be a perfect square:

If a number is expressed as the product of pairs of equal factors, then it is called a perfect square.

Ex: – 36    test for perfect square

Prime factors of 36 = 2× 2× 3× 3

36 can be expressed as the product of pairs of equal factors.

∴ 36 is a perfect square.

Square Root: the square root of a number x is that number when multiplied by itself gives x as the product. The square root of x is denoted by sqrt x

example for sqrt

Methods of Finding Square root of given Number

Prime factorization method: –

Steps:

  1. Resolve the given number into prime factors.
  2. Make pairs of similar factors.
  3. The product of prime factors, choosing one out of every pair gives the square root of the given number.

Ex: – To find the square root of 16

Prim factors of 16 = 2 ×2× 2× 2

= 2 × 2 = 4

∴ square root of 16 = 4

Division method: –

Steps:

  1. Mark off the digits in pairs starting with the unit place. Each pair and remaining one digit are called a period.
  2. Think of the largest number whose square is equal to or just less than the first period. Take this number as the divisor as well as quotient.
  3. Subtract the product of divisor and quotient from the first period and bring down the next period to the right of the remainder. this becomes the new dividend.
  4. Now, the new divisor is obtained by taking twice the quotient and annexing with it a suitable digit which is also taken as the next digit of the quotient, chosen in such a way that the product of the new divisor and this digit is equal to or just less than the new dividend.

Repeat steps 2, 3, and 4 till all the periods have been taken up. Thus, the obtained quotient is the required square root.

Ex: – To find the square root of 225

icse class 8, square root of a number

Properties of a perfect square:

1. The square of an even number is always an even number.

Ex: – 22 = 4 (4 is even), 62 = 36 (36 is even), here 2, 6 are an even number.

2. The square of an odd number is always an odd number.

Ex: – 32 = 9 (9 is even), 152 = 225 (225 is even), here 3, 15 are an odd number.

3. The square of a proper fraction is a proper fraction less than the given fraction.

Ex: –square of a proper fractin

4. The square of decimal fraction less than 1 is smaller than the given decimal.

Ex: – (0.3)2 = 0.09 < 0.03.

5. A number ending with 2, 3, 7, or 8 is never a perfect square.

Ex: – 72, 58, 23 are not perfect squares.

6. A number ending with an odd no. of zeros is never a perfect square

Ex: – 20, 120,1000 and so on.

The square root of a number in decimal form

Make the no. of decimal places even, by affixing a zero, if necessary. Now periods and find out the square root by the long division method.

Put the decimal point in the square root as soon as the integral part is exhausted.

Ex: – To find the square root of 79.21

icse viii maths square root of decimal number

The square root of a decimal number which is not perfect square:

if the square root is required to correct up to two places of decimal, we shall find it up 3 places of decimal and then round it off up to two decimal places.

if the square root is required to correct up to three places of decimal, we shall find it up 4 places of decimal and then round it off up to three decimal places.

Ex: – To find the square root of 0.8 up to two decimal places

icse viii math square root of decimal number which is not perfect square

Cube of a number:

The cube of a number is that number raised to the power 3.

Ex: – cube of 0.3 = 0.33 = 0.027

Cube of 2 = 23 = 8

Perfect cube:

If a number is a perfect cube, then it can be written as the cube of some natural numbers.

Ex: – 1, 8, 27, and so on.

Cube root:

The cube root of a number x is that number which when multiplied by itself three times gives x as the product.

Cube root of x is denoted by Cube root x

example for cube root

Methods of finding the cube root of the given Number

Prime factorization method: –

Steps:

  1. Resolve the given number into prime factors.
  2. Make triplets of similar factors.
  3. The product of prime factors, choosing one out of every triplet gives the cube root of the given number.

Ex: – 27

Prim factors of 27 = 3×3×3

= 3

∴ cube root of 27 = 3

Test for a number to be perfect cube:

A given number is a perfect cube if it can be expressed as the product of triplets of equal factors.

Ex: – 2744  test-for-a-number-to-be-perfect-cub

Prime factors of 2744 = 2×2×2 × 7×7×7

∴ 2744 is a perfect cube.


Visit my Youtube Channel: Click on Below Logo

AS_Tutorioal_Png

ICSE IX CLASS MATHS CONCEPT FEATURE IMAGE

ICSE IX Class Maths Concept

ICSE IX Class Maths Concept

 

ICSE IX Class Maths Concept: This note is designed by the ‘Basics in Maths’ team. These notes to do help the ICSE 9th class Maths students fall in love with mathematics and overcome their fear.

These notes cover all the topics covered in the ICSE 9th class Maths syllabus and include plenty of formulae and concept to help you solve all the types of ICSE 9th

Math problems are asked in the CBSE board and entrance examinations.


1. RATIONAL AND IRRATIONAL NUMBERS

Natural numbers: counting numbers 1, 2, 3… called Natural numbers. The set of natural numbers is denoted by N.

N = {1, 2, 3…}

Whole numbers: Natural numbers including 0 are called whole numbers. The set of whole numbers denoted by W.

W = {0, 1, 2, 3…}

Integers: All positive numbers and negative numbers including 0 are called integers. The set of integers is denoted by I or Z.

Z = {…-3, -2, -1, 0, 1, 2, 3…}

Rational number: The number, which is written in the form of, where p, q are integers and q ≠ o is called a rational number. It is denoted by Q.

∗ In a rational number, the numerator and the denominator both can be positive or negative, but our convenience can take a positive denominator.

Ex: – \inline \fn_jvn -\frac{2}{3} can be written as \inline \fn_jvn \frac{-2}{3}=\frac{2}{-3}  but our convenience we can take \inline \fn_jvn \frac{-2}{3}

Equal rational numbers:

For any 4 integers a, b, c, and d (b, d ≠ 0), we have \inline \fn_jvn \frac{a}{b}=\frac{c}{d} ⇒ ad = bc

The order of Rational numbers:

If  are two rational numbers such that b> 0 and d > 0 then \inline \fn_jvn \frac{a}{b}> \frac{c}{d} ⇒ ad > bc

The absolute value of rational numbers:

The absolute value of a rational number is always positive. The absolute value of  \inline \fn_jvn \frac{a}{b} is denoted by \inline \fn_jvn \left | \frac{a}{b} \right | .

Ex: – absolute value of \inline \fn_jvn -\frac{2}{3}=\frac{2}{3}

To find rational number between given numbers:

  • Mean method: – A rational number between two numbers a and b is \inline \dpi{120} \fn_jvn \frac{a + b}{2}

  Ex: – insert two rational number between 1 and 2

1 <  \inline \dpi{120} \fn_jvn \frac{1 + 2}{2} < 2   ⟹     1 <  \inline \dpi{120} \fn_jvn \frac{3}{2}  < 2

1 <  \inline \dpi{120} \fn_jvn \frac{3}{2} \inline \dpi{120} \fn_jvn < \frac{\frac{3}2{+2}}{2}< 2   ⟹   1 < \inline \dpi{120} \fn_jvn \frac{3}{2}< \frac{7}{4} \dpi{120} \fn_jvn <  2

To rational numbers in a single step: –

Ex:- insert two rational numbers between 1 and 2

To find two rational numbers, we 1 and 2 as rational numbers with the same denominator 3

(∵ 1 + 2 = 3)

1 =   \fn_jvn \frac{1\times 3}{3}  and 2 = \inline \dpi{120} \fn_jvn \frac{2\times 3}{3}

\inline \dpi{120} \fn_jvn \frac{3}{3}\left ( 1 \right )< \frac{4}{3}< \frac{5}{3}< \frac{6}{3}\left ( 2 \right )

 

Note: – there are infinitely many rational numbers between two numbers.

The decimal form of rational numbers

icse ix terminating desimals

icse ix class nomterminating repeating decimal form

∗ Every rational number can be expressed as a terminating decimal or a non-terminating repeating decimal.

Converting decimal form into \dpi{120} \fn_jvn \frac{p}{q}  the form:

1. Terminating decimals: –

1.2 =\inline \dpi{120} \fn_jvn \frac{12}{10}=\frac{6}{5}

1.35 =\inline \dpi{120} \fn_jvn \frac{135}{100}=\frac{27}{20}

2. Non-Terminating repeating decimals: –

CONVERT INTO PB Y Q FORM 1

CONVERT INTO P BY Q FORM 2

Irrational numbers:

  • The numbers which are not written in the form of  \dpi{120} \fn_cm \frac{p}{q}, where p, q are integers, and q ≠ 0 are called rational numbers. Rational numbers are denoted by QI or S.
  • Every irrational number can be expressed as a non-terminating decimal or non-repeating decimal.

Ex:- \dpi{120} \fn_cm \sqrt{2},\, \sqrt{5},\pi and so on.

  • Calculation of square roots:
  • There is a reference of irrationals in the calculation of square roots in Sulba Sutra.
  • Procedure to finding \dpi{120} \fn_cm \sqrt{2} value:

finding sqrt of 2


Visit my Youtube Channel: Click on Below Logo

AS_Tutorioal_Png

ICSE MATHS CONCEPT FEATURE IMAGE

ICSE X Class Maths Concept

ICSE X Class Maths

ICSE X Class Maths Concept designed by the ‘Basics in Maths’ team. These notes to do help the ICSE 10th class Maths students fall in love with mathematics and overcome their fear.

These notes cover all the topics covered in the ICSE 10th class Maths syllabus and include plenty of formulae and concept to help you solve all the types of 10th class Mathematics problems asked in the ICSE board and entrance examinations.


 1. Goods and Service Tax

Two types of taxes in the Indian Government:

1.Direct taxes: –

These are the taxes paid by an organisation or individual directly to the government. These include Income tax, Capital gain tax and Corporate tax.

2.Indirect taxes: –

These are the taxes on goods and services paid by the customer, collected by an individual or an organisation and deposited with the Government. Earlier there were several indirect taxes levied by the central and state Governments.

Goods and Service Tax (GST):

GST is a comprehensive indirect tax for the whole nation. It makes India one unified common market.

 Registration under GST:

Any individual or organisation that has an annual turnover of more than ₹ 20 lakh is to be registered under GST.

Input and Output GST:

For any individual or organisation, the GST paid on purchases is called the ‘Input GST’ and the GST collection on sale of goods is called the ‘Output GST’. The input GST is set off against the output GST and the difference between the two is payable in the Government account.

One currency one tax:

There is a uniform GST rate on any particular goods or services across all states and Union Territories of India. This is called ‘One currency one tax’.

Note: Assam was the first state to implement GST and Jammu & Kashmir was the last.

GST rate slabs:

ICSE X class Maths GST rate slabs

However, the tax on gold is kept at 3% and on rough precious and semi-precious is kept at 0.25%.

The multitier GST tax rate system in India has been developed keeping in mind that essential commodities should be taxed less than luxury goods.

Benefits of GST for Traders:

• Simple tax system.

• Elimination of multiplicity of taxes.

• Development of a common market nation-wide.

• Reduction of cascading effect.

• Lower taxes result in the reduction of costs making in the domestic market.

Benefits of GST for Consumers:

• Single and transparent System.

• Elimination of cascading effect has resulted in the reduction in the costs of goods and services.

• Increase in purchasing power and savings.

Benefits of GST for Traders:

• Single tax system, simple and easy to administer.

• Higher revenue efficiency.

• Better control on leakage and tax evasion.

Types of GST in India

Central GST (CGST): For any intrastate supply half of the GST collected as the output GST is deposited with the Central Governments as CGST.

State GST or Union Territory GST (SGST/UGST): For any local supply (supply with in the same state or Union Territory) half of the GST is deposited with the respective state or Union Territory Government as the beneficiary. This is called SGST/UGST.

Integrated GST (IGST): The GST levied on the supply of goods or services in the case of interstate trade within India or in the case of exports/imports is known as IGST.

Reverse charge Mechanism:

There are cases where the chargeability gets reversed, that is the receiver becomes liable to pay the tax and deposit it to the Government Account.

Composition shame:

The composition is meant for small dealers and service providers with an annual turnover less than ₹ 1.5 crores and also for Restaurant service providers. Under this scheme the rates of GST are:

ICSE X class Maths Composition Scheme
Input Tax Credit (ITC)
    

When a dealer sells his goods, he charges the output GST from his customer which he has to deposit in the government account, but in running his business he had paid input GST on the goods he had availed. This input GST, he utilizes as Input Tax credit and deposits the exes amount of output GST with the Government.

Input Tax credit is a provision of reducing the GST already paid on inputs in order to avoid the cascading of taxes.

GST payable = Output GST – ITC

Claiming ITC: A dealer registered under GST can claim ITC only if:

  • He possesses the tax invoice.
  • He has received the said goods/services
  • He has filed the returns.
  • The tax paid by him has been paid to the government by his supplier.

Utilization of ITC:

The Amount of ITC available to any registered dealer shall be utilized to reduce the out put tax liability in the sequence shown in the table.

ICSE X class Maths Utilization of ITC

E – ledgers under GST:
An E – ledger is an electronic form of a pass book available to all GST registrants on the GST portal. These are of three types:

(i) Electric cash ledger (ii) Electric credit ledger and (iii) Electric Liability Register

(i) Electric cash ledger: It contains the amounts of GST deposited in each to the government.

(ii) Electric credit ledger: It contains the balance of ITC available to the dealer.

(iii) Electric credit ledger: It contains all the Tax liability of the dealer.

GST Returns:

These are the information provided from time to time by the dealer to the Government regarding the ITC, output Tax liability and the amounts of GST deposited.

A GST registered person has to submit the following returns:

ICSE X class Maths GST returns

E – Way bill:
E – Way bill is an electronic way bill that can be generated on the E – Way bill portal. A registered person can not transport goods whose value exceeds ₹ 50,000 in a vehicle without an e – way bill. When an E – way bill is generated, a unique e – way bill number (EBN) is allocated and is available to the supplier, the transporter and recipient. A dealer must generate an E – way bill if he has to transport them for returning to the supplier.
 

 

 

 


2.Banking

 To encourage the habit of saving income groups, banks and post offices provide recurring deposit schemes.

Maturity period: An investor deposits a fixed amount every month for a fixed time period is called the maturity period,

Maturity value:  At the end of the maturity period, the investor gets the amount deposited with the interest. The total amount received by the investor is called Maturity value.

Interest =    p times frac{n(n+1))}{2times 12}times frac{r}{100}

Where p is the principle

n is no. of months

r is the rate of interest

Maturity value = (p × n) + I

 


 

3.Shares and Dividend

Capital: The total amount of money needed to run the company is called Capital.

Nominal value (N.V): – The original value of a share is called the nominal value. It is also called as face value (F.V), printed value (P.V) or registered Value (R.V).

Market value: – The price of a share at a particular time is called market value (M.V). This value changes from time to time.

Shares: The whole capital is divided in to small units is called shares.

Share at par: – If the market value of a share is equal to face value of a share, then that share is called a share at par.

Share at a premium or Above par: – If the market value of a share is greater than the face value of the share then, the share is called share at a premium or above par.

Share at discount: – If the market value of a share is lesser than the face value of the share then, the share is called share at discount.

Dividend: – The profit distributed to the shareholders from a company at the end of the year is called a dividend.

The dividend is always calculated as the percentage of face value of the share.

Some formulae:

shares formulae

Note:

  • The face value of a share always remains the same
  • The market value of a share changes from time to time.
  • Dividend is always paid on the face value of a share

 


 4. Linear In equations

Linear inequations: A statement of inequality between two expressions involving a single variable x with highest power one is called linear inequation.

Ex: 3x – 3 < 3x + 5; 2x + 10 ≥ x – 2 etc.

General forms of Inequations: The general forms of the linear inequations are: (i) ax + b < c   (ii) ax + by ≤ c    (iii)  ax + by ≥ c    (iv) ax + by > c, where a, b and c are real numbers and a ≠ 0.

Domain of the variable or Replacement Set: The set form which the value of the variable x is replaced in an inequation is called the Domain of the variable.

Solution set: The set of all whole values of x from the replacement set which satisfy the given inequation is called the solution set.

Ex: Solution set of x < 6, x ∈ N is {1, 2, 3, 4, 5}

Solution set of x ≤ 6, x ∈ W is {0, 1, 2, 3, 4, 5, 6}

Inequations – Properties:

• Adding the same number or expression to each side of an inequation does not change the inequality.

Ex: 3 < 5

Add 2 on both sides

3 + 2< 5 + 2

5 < 7 (no change in inequality)

• Subtracting the same number or expression to each side of an inequation does not change the inequality.

Ex: 3 < 5

subtract 2 on both sides

3 – 2 < 5 – 2

1 < 3 (no change in inequality)

• Multiplying or Dividing the same positive number or expression to each side of an inequation does not change the inequality.

Ex: 3 < 5

Multiply 2 on both sides

3 × 2< 5 × 2

6 < 10 (no change in inequality)

6 < 8

Divide 2 on both sides

6 ÷ 2< 8 ÷ 2

3< 4 (no change in inequality)

•Multiplying or Dividing the same negative number or expression to each side of an inequation can change(reverse) the inequality.

Ex: 3 < 5

Multiply 2 on both sides

3 × –2< 5 × –2

–6 > –10 (change in inequality)

6 < 8

Divide 2 on both sides

6 ÷ –2< 8 ÷ –2

–3 > –4 (change in inequality)

Note:

  • a < b iff b > a
  • a > b iff b < a

Ex: x < 4 ⇔ 4 > x

x > 3 ⇔ 3 < x

Method of solving Liner Inequations:

  • Simplify both sides by removing group symbols and collecting like terms.
  • Remove fractions by multiplying both sides by an appropriate factor.
  • Collect all variable terms on one side and all constants on the other side of the inequality sign.
  • Make the coefficient of the variable 1.
  • Choose the solution set from the replacement set.

Ex: Solve the inequation 3x – 2 < 2 + x, x ∈ W

Sol: given in equation is

3x – 2 < 2 + x

Add 2 on both sides

3x – 2 + 2< 2 + x + 2

3x < 4 + x

3x – x < 4

2x < 4

Dividing both sides by 2

x < 2

∴ Solution set = { 0, 1}

 


5.Quadratic Equations

Quadratic Equation: An equation of the form ax2 + bx + c = 0, where a, b, and c are real and a ≠ 0 is called a Quadratic equation in a variable ‘x’.

Ex: x 2 – 3x + 4 = 0 is a quadratic equation in a variable ‘x’

t2 + 5t = 6 is a quadratic equation in a variable ’t’

Roots of a quadratic equation: A number α is called a root of the quadratic equation ax2 + bx + c = 0, if aα2 + bα + c = 0.

Solution set:  The set of elements representing the roots of a quadratic equation is called solution set of the give quadratic equation.

Solving Quadratic equation by using Factorization met

hod:

Step – 1: Make the given equation into the standard form of ax2 + bx + c = 0.

Step – 2: Factorise ax2 + bx + c into two linear factors.

Step – 3: Put each linear factor equal to zero.

Step – 4: Solve these linear equations and get two roots of the given quadratic equation.

Ex: Solve x2 – 3x – 4 = 0

x2 – 4x + x – 4 = 0

x (x – 4) + 1 (x – 4) = 0

(x – 4) (x + 1) = 0

x – 4 = 0 or x + 1 = 0

x = 4 or x =– 1

∴ Solution set = {– 1, 4}

Solving Quadratic equation by using Formula:

The roots of the quadratic equation ax2 + bx + c = 0 are:

ICSE X maths Quadratic Formula

Ex: Solve x2 – 3x – 4 = 0

Sol: Given equation is x2 – 3x – 4 = 0

Compare with ax2 + bx + c = 0

a = 1, b = – 3, c = – 4

  ICSE X maths Quadratic Formula example

x = 4 or x = – 1

∴ Solution set = {– 1, 4}

Nature of the roots:

Discriminant: – For a quadratic equation ax2 + bx + c = 0, b2 – 4ac is called discriminant.

(i) If b2 – 4ac > 0, then roots are real and un equal.

     Case – 1: b2 – 4ac > 0 and it is a perfect square, then roots are rational and unequal.  

    Case – 2: b2 – 4ac > 0 and it is not a perfect square, then roots are irrational and unequal.     

(ii) If b2 – 4ac = 0, then roots are equal and real.

(iii) b2 – 4ac < 0, then roots are imaginary and un equal.

 


6.Problems on Quadratic equations

To solve word problems and determine unknown values, by forming quadratic equations from the information given and solving them by using methods of solving Quadratic equation.

The problems may be based on numbers, ages, time and work, time and distances, mensuration etc.

Method of Solving word problems in Quadratic equation:

Step – 1: Read the given problem carefully and assume the unknown be x.

Step – 2: Translate the given statement and form a quadratic equation in x.

Step – 3: Solve for x.


7.Ratio and Proportion

Ratio: Comparing two quantities of same kind by using division is called a ratio.

The ratio between two quantities ‘a’ and ‘b’ is written as a : b and read as ‘a is to b’

In the ratio a : b, ‘a’  is called ‘first term’ or ‘antecedent’ and ‘b’ is called ‘second term’ or ‘consequent’.

Note:  The value of a ratio remains un changed if both of its terms are multiplied or divided by the same number, which is not a zero.

Lowest terms of a Ratio:

In the ratio a : b, if a, b have no common factor except 1, then we say that a : b is in lowest terms.

Ex: 4 : 12 = 1 : 3 ( lowest terms)

Comparison of Ratios:  

  • (a : b) > (c : d) ⇔ ad > bc
  • (a : b) = (c : d) ⇔ ad = bc
  • (a : b) < (c : d) ⇔ ad < bc

Proportion:

An equality of ratios is called a proportion.

a, b, c and d are said to be in proportion if a : b = c : d and we write as a : b : : c : d.

a and d are ‘extremes’, b and c are ‘means’

product of extremes = product of means

Continued proportion: If a, b, c, d, e and f are in continued proportion, then ICSE X maths Continued Proportion

Mean proportion:  If ICSE X maths Mean Proportion 1then b2 = ac or b = ICSE X maths Mean Proportion 2 , b is called mean proportion between a and b.

Third proportional: If a : b = b : c, then c is called third proportional to a and b.

Note: 

ICSE X maths Ratio and proportion 1

Results on Ratio and Proportion:

ICSE X maths Results on Ratio and Proportion

 

 

 

 


8.Remainder Theorem and Factor Theorem

Polynomial: An expression of the form p(x) = a0 xn + a1 xn-1 + a2 xn-2 + …+ an-1 x + an, where a0, a1, …, an are real numbers and a0 ≠ 0. Is called a polynomial of degree n.

Value of a polynomial: The value of a polynomial p(x) at x = a is obtained by substituting x = a in the given polynomial and is denoted by p(a).

Ex: If p(x) = 2x + 3, then find the value of p (1), p (0).

Sol: given p(x) = 2x + 3

p (1) = 2 (1) + 3 = 2 + 3 = 5

p (0) = 2 (0) + 3 = 0 + 3 = 3

Division algorithm: On dividing a polynomial p(x) by a polynomial g(x), there exist quotient polynomial q(x) and remainder polynomial r(x) then

p(x) = g(x) q(x) + r(x)

p(x) is dividend; g(x) is divisor; q(x) is quotient; r(x) is remainder.

Remainder theorem:

If a polynomial p(x) is divided by (x – a), then the remainder is p(a).

Ex: If p(x) = 2x – 1 is divided by (x – 3), then find reminder.

Sol: Given p(x) = 2x – 1

Remainder = p (3)

= 2(3) – 1

= 6 – 1 = 5

∴ remainder is 5

Note:

  • If p(x) is divided by (x + a), then the remainder is p (– a).
  • If p(x) is divided by (ax + b), then remainder isICSE X maths Remainder theorem 1 .
  • If p(x) is divided by (ax – b), then remainder isICSE X maths Remainder theorem 2 .

Factor theorem: Let p(x) be a polynomial and ‘a’ be given real number, then (x – a) is a factor of p(x) ⇔ p(a) = 0.

Note:

  • If (x + a) is the factor of p(x), then p (– a) = 0.
  • If (ax + b) is the factor of p(x), then ICSE X maths Remainder theorem 1  = 0.
  •  If (ax – b) is the factor of p(x), ICSE X maths Remainder theorem 2   = 0

 

 

 


9. Matrices

Matrix: A rectangular arrangement of numbers in the form of horizontal and vertical lines and enclosed by the brackets [ ] or parenthesis ( ), is called a matrix.

The horizontal lines in a matrix are called its rows.

The vertical lines in a matrix are called its columns.

Oder of Matrix: A matrix having ‘m’ rows and ‘n’ columns is said to be of order m x n read as m by n.

Ex:    ICSE X maths Matrices 1

Elements of a matrix:

An element of a matrix appearing in the ith row and jth column is called the (i, j)th element of the matrix and it is denoted by aij.

A = [aij]m × n

A = ICSE X maths Matrices 2

a11 means element in first row and first column

a12 means element in first row and second column

a22 means element in second row and second column

a32 means element in third row and second column

and so on.

Types of Matrices

Row matrix & column Matrix: A matrix with only one row s called a row matrix and a matrix with only one column is called column matrix.

Ex: ICSE X maths Matrices 3

Rectangular Matrix: A matrix in which the no. of rows is not equal to no. of columns is called Rectangular matrix.

Ex: ICSE X maths Matrices 4

Square Matrix: A matrix in which the no. of rows is equal to no. of columns is called square matrix.

Ex: ICSE X maths Matrices 5

 Diagonal Matrix: If each non-diagonal elements of a square matrix is ‘zero’ then the matrix is called diagonal matrix.

Ex: ICSE X maths Matrices 7

Identity Matrix or Unit Matrix: If each of non-diagonal elements of a square matrix is ‘zero’ and all diagonal elements are equal to ‘1’, then that matrix is called unit matrix

Ex: ICSE X maths Matrices 8

Null Matrix or Zero Matrix: If each element of a matrix is zero, then it is called null matrix.

Ex:   ICSE X maths Matrices 9

Equality of matrices: matrices A and B are said to be equal if A and B of the same order and the corresponding elements of A and B are equal.

Ex: If  ICSE X maths Matrices 10 ⟹ a=p; b = q; c = r; d = s

Comparing Matrices: Comparison of two matrices is possible, if they have same order.

Transpose of Matrix: If A = [aij] is an m x n matrix, then the matrix obtained by interchanging the rows and columns is called the transpose of A. It is denoted by   AT.

Ex: ICSE X maths Matrices 11

Addition of Matrices: If A and B are two matrices of the same order, then their sum A + B is the matrix obtained by adding the corresponding elements of A and B.

Ex:

  ICSE X maths Matrices 14

Subtraction of Matrices: If A and B are two matrices of the same order, then their difference A + B is the matrix obtained by subtracting the elements of B from the corresponding elements of A.

Ex:   

ICSE X maths Matrices 15

Product of Matrices:

Let A = [aik]mxn and B = [bkj]nxp be two matrices, then the matrix C = [cij]mxp   whereICSE X maths Matrices 12

Note: Matrix multiplication of two matrices is possible when no. of columns of first matrix is equal to no. of rows of second matrix.

ICSE X maths Matrices 13

 

 

 

 


10. Arithmetic Progressions

Sequence:  The numbers which are arranged in a different order to some definite rule are said to form a sequence.

Ex: 1, 2, 3, ……

2, 4, 6, 8, ….

2, 4, 8, 16, …

Arithmetic Progression (A.P.):

A sequence in which each term differ from its preceding term by a constant is called an Arithmetic Progression (A.P.). The constant difference is called the common difference.

Terms: a, a + d, a + 2d…, a + (n – 1) d

First term: a

Common Difference: d = a2 – a1 = a3 – a2 = … = an – an -1

nth term: Tn = a + (n – 1) d

Sum of the n terms of A.P.:         

 Sum of the n terms of A.P. is

ICSE X maths AP 1

Where a is first term and l is last term.

To find the nth term from the end of an A.P.:

Let a be first term, d be the common difference and ‘l’ be the last term of a given A.P. then its nth term from the end is l – (n – 1) d .

 

 

 


11. Geometric Progressions

Terms: a, a r, a r2…, a rn – 1  

First term: a

Common ratio:   ICSE X maths GP 1

nth term: Tn = a rn – 1  

Sum of the n terms of G.P.:

Sum of the n terms of G.P. is

ICSE X maths GP 2

To find the nth term from the end of an G.P.:

Let a be first term, r be the common ratio and ‘l’ be the last term of a given G.P. then its nth term from the end is ICSE X maths GP 3


12. Reflection

Coordinate Axes:

The position of the point in a plane is determined by two fixed mutually perpendicular lines XOX’ and YOY’ intersecting each other at ‘O’. These lines are called coordinate axes.

ICSE X maths Reflection 1

The horizontal line XOX’ is called X – axis.

The vertical line YOY’ is called Y – axis.

The point of intersection axes is called ‘origin’.

Coordinates of a point:

Let P be any point on the plane, the distance of P from X – axis is ‘x’ units and the distance of P from Y – axis is ‘y’ units, then we say that coordinates of P are (x, y).

ICSE X maths Reflection 2

x is called x coordinate or abscissa of P

y is called y coordinate or ordinate of P

The distance of any point on X – axis from X – axis is 0

∴ Any point on the X – axis is (x, 0)

The distance of any point on Y – axis from Y – axis is 0

∴ Any point on the Y – axis is (0, y).

The coordinates of the origin O are (0, 0).

The equation of X – axis is y = 0.

The equation of any line parallel to X – axis is y = k, where k is the distance from X – axis.

The equation of Y – axis is x = 0.

The equation of any line parallel to Y – axis is x = k, where k is the distance from Y – axis.

Reflection

Image of an object in a mirror: When an object is placed in front of a plane mirror, then its image is formed at the same distance behind the mirror as the distance of the object from the mirror.

Image of a point in a line:

ICSE X maths Reflection 4

Let P be a point and AB is a given line. Draw PM perpendicular to AB and produce PM

to Q such that PM = QM, then Q is called image of P with respect to the line AB.

Reflection of a point in a line:

Assume the given line as a mirror, the image of a given point is called the reflection of that point in the given line.

Reflection of P (x, y) in X – axis is P (x, –y) ⇒ Rx (x, y) = (x, –y)

Reflection of P (x, y) in Y – axis is P (–x, y) ⇒ Rx (x, y) = (–x, y)

Reflection of P (x, y) in the origin is P (–x, –y) ⇒ Rx (x, y) = (–x, –y)

ICSE X maths Reflection 5

Combination of Reflection:

  • Rx. Ry = Ry. Rx = Ro
  • Rx. Ro = Ro. Rx = Ry
  • Ry. Ro = Ro. Ry = Rx

Invariant Points: A point P is said to be invariant in a given line if the image of P (x, y) in that line is P (x, y).

 


13. Section and Mid – Point Formula

Section formula: If P (x, y) divides the line segment joining the points A (x1, y1) and B (x2, y2) in the ratio m : n, then

P (x, y) = ICSE X maths Section and Midpoint Formula 1

Mid pint Formula:

The mid-point of the line segment joining the points A (x1, y1) and B (x2, y2) is ICSE X maths Section and Midpoint Formula 2

Centroid of the triangle:

The point of concurrence of medians of a triangle is called centroid of the triangle. It is denoted by G.

The centroid of the triangle formed by the vertices A (x1, x2), B (x2, y2) and C (x3, y3) is

G = ICSE X maths Section and Midpoint Formula 3


14. Equation of a Straight line

Inclination of a line: The angle of inclination of a line is the angle θ which is the part of the line above the X – axis makes with the positive direction of X – axis and measured in anticlockwise direction.

ICSE Maths Equation of a Straight line 8

Horizontal line: A line which is parallel to X – axis is called horizontal line.

Vertical line: A line which is parallel to Y – axis is called vertical line.

Oblique line: A line which is neither parallel to X – axis nor parallel to Y – axis is called an oblique line.

Slope or Gradiant of a line:

A line makes an angle θ with the positive direction of x – axis then tan θ is called the slope of the line, it is denoted by ‘m’

m = tan θ

  1. Slope of the x- axis is zero.
  2. Slope of any line parallel to x- axis is zero.
  3. Slope of y- axis is undefined.
  4. Slope of any line parallel to y- axis is also undefined.
  5. Slope of the line joining the points A (x1, y1) and B (x2, y2) is

ICSE Maths Equation of a Straight line 2

  1. Slope of the line ax + by + c = 0 is  = ICSE Maths Equation of a Straight line 3

Condition for collinearity: If three points A, B and C are lies on the same line then they are collinear points.

Condition for the collinearity is slope of AB = Slope of BC = slope of AC

Types of equation of a straight line:

  • Equation of x- axis is y = 0.
  • Equation of any line parallel to x – axis is y = k, where k is distance from above or below the x- axis.
  • Equation of y- axis is x = 0.
  • Equation of any line parallel to y – axis is x = k, where k is distance from left or right side of the y- axis.

Slope intercept form:

The equation of the line with slope m and y- intercept ‘c’ is y = mx + c.

Slope point form:

The equation of the line passing through the point (x1, y1) with slope ‘m’ is

y – y1 = m (x – x1)

Two points form:

The equation of the line passing through the points (x1, y1) and (x2, y2) is

ICSE Maths Equation of a Straight line 4

Intercept form:

The equation of the line with x- intercept a, y – intercept b is

ICSE Maths Equation of a Straight line 5  ICSE Maths Equation of a Straight line 6

Note: –

  1. If two lines are parallel then their slopes are equal

                            m1 = m2

  1. If two lines are perpendicular then product of their slopes is – 1

         m1 × m2 = – 1

          slope of a line perpendicular to a line AB = ICSE Maths Equation of a Straight line 7


 15. Similarity

Similar figures: If two figures have same shape but not in size, then they are similar.

ICSE X Maths Similarity 1

Similarity as a Size transformation:

It is the process in which a given figure is enlarged or reduced by a scale factor ‘k’, such that the resulting figure is similar to the given figure.

The given figure is called an ‘object’ and the resulting figure is called its ‘image’

Properties of size transformation:

Let ‘k’ be the scale factor of a given size transformation, then

If k > 1, then the transformation is enlargement.

If k = 1, then the transformation is identity transformation.

If k < 1, then the transformation is reduced.

Note:

  • Each side if the resulting figure = k times the corresponding side of the given figure.
  • Area of the resulting figure = k2 × (Area of the given figure).
  • Volume of the resulting figure = k3 × (Volume of given figure).

Model: The model of a plane figure and the actual figure are similar to one another.

Let the model of the plane figure drawn to the scale 1 : n, then scale factor k = ICSE X Maths Similarity 2 .

  • Length of the model = k × (length of the actual figure)
  • Area of the model = k2 × (Area of the actual figure).
  • Volume of the model = k3 × (Volume of actual figure).

Map: The model of a plane figure and the actual figure are similar to one another.

Let the Map of the plane drawn to the scale 1 : n, then scale factor k = ICSE X Maths Similarity 2 .

  • Length of the map = k × (Actual length)
  • Area of the model = k2 × (Actual area).

16. Similarity of Triangles

Similar triangles: Two triangles are said to be similar If: (i) their corresponding angles are equal and (ii) their corresponding sides are in proportional (in same ratio).

If ∆ABC ~ ∆DEF, then

ICSE X Maths Similarity of Triangles 2

  • ∠A = ∠D, ∠B = ∠E and ∠C = ∠F
  • ICSE X Maths Similarity of Triangles 1

 Here k is scale factor, (i) if k > 1, then we get enlarged figures (ii) if k = 1, then we get congruent figures (iii) if k < 1, then we get reduced figures.

Axioms of Similar Triangles

SAS – Axiom:

If two triangles have a pair of corresponding angles equal and the corresponding sides including them proportional, then the triangle is similar.

ICSE X Maths Similarity of Triangles 3

In ∆ABC and ∆DEF, ∠A = ∠D and ICSE X Maths Similarity of Triangles 11

AA – Axiom : If two triangles have two pairs of corresponding angles equal, then the triangles are equal.

ICSE X Maths Similarity of Triangles 4

SSS – Axiom: If two triangles have their three sides of corresponding sides proportional, then the triangles are similar.

ICSE X Maths Similarity of Triangles 3

Basic proportionality Theorem:

In a triangle a line drawn parallel to one side divides the other two sides in the same ratio (proportional).

ICSE X Maths Similarity of Triangles 5

In ∆ ABC, DE ∥ BC ⇒ICSE X Maths Similarity of Triangles 6

Converse of Basic proportionality Theorem:

If a line divides any two sides of a triangle proportionally, the line is parallel to the third side.

In ∆ ABC,ICSE X Maths Similarity of Triangles 6  ⇒ DE ∥ BC.

∎ Ina triangle the internal bisector of an angle divides the opposite side in the ratio of the sides containing the angle.

ICSE X Maths Similarity of Triangles 8

In ∆ ABC, AD bisects ∠A then ICSE X Maths Similarity of Triangles 7

∎ The areas of two similar triangles are proportional to the squares of their corresponding sides.

ICSE X Maths Similarity of Triangles 3

If ∆ABC ~ ∆DEF, then ICSE X Maths Similarity of Triangles 9

∎ The areas of two similar triangles are proportional to the squares of their corresponding medians.

ICSE X Maths Similarity of Triangles 12

If ∆ABC ~ ∆DEF and AM, DN are medians of   ∆ABC and ∆DEF respectively then ICSE X Maths Similarity of Triangles 13

∎ The areas of two similar triangles are proportional to the squares of their corresponding altitudes.

ICSE X Maths Similarity of Triangles 10

If ∆ABC ~ ∆DEF and AM, DN are altitudes of ∆ABC and ∆DEF respectively then ICSE X Maths Similarity of Triangles 13


17. Loci

Locus: Locus is the path traced out by a moving point which moves according to some given geometrical conditions.

The plural form of Locus is ‘Loci’ read as ‘losai’

∎ The locus of the point which is equidistance from two given fixed points is the perpendicular bisector of the line segment joining the given fixed       points.

∎ Every point on the perpendicular bisector of AB is equidistance from A and B.

ICSE X Maths Loci 1

∎ The locus of the point which is equidistance from two intersecting lines is the pair of lines bisecting the angles formed by the given lines.

∎Every point on the angular bisector of two intersecting lines is equidistance from the lines.


18. Angle and Cyclic Properties of a Circle

∎ The angle subtended by an arc of a circle is double the angle subtended by it at any point on the circle.

ICSE X Maths Angles and cyclic properties of a circle 1

∠AOB = 2 ∠ACB

∎ Angles in a same segment of a circle are equal.

ICSE X Maths Angles and cyclic properties of a circle 2

∠ACB = ∠ADB

∎ The angle in a semi-circle is 900

ICSE X Maths Angles and cyclic properties of a circle 3

∎ If an arc of a circle subtends a right angle at any point on the remaining part of the circle, then the arc is semi-circle.

Cyclic Quadrilateral:

A quadrilateral is said to be cyclic if all the vertices passing through the circle.

ICSE X Maths Angles and cyclic properties of a circle 4

The opposite angles of cyclic quadrilateral are supplementary.

∎ If pair of opposite angles of a quadrilateral are supplementary, then the quadrilateral is cyclic.

∎ The exterior angle of a cyclic quadrilateral is equal to the interior opposite angle.

ICSE X Maths Angles and cyclic properties of a circle 6

 ∎ Every cyclic parallelogram is a rectangle.

∎ An isosceles trapezium is always cyclic and its diagonals are equal.

∎ The mid-point of hypotenuse of a right-angled triangle is equidistance from its vertices.


19. Tangent Properties of Circles

Tangent: A line which intersect the circle at only one point is called Tangent to the circle.

∎ The tangent at any point of a circle and radius through the point are perpendicular to each other.

ICSE X Maths Tangent properties of circles 1

∎ If two tangents are drawn to a circle from an exterior point, then

ICSE X Maths Tangent properties of circles 2

  • The tangents are equal in length.
  • The tangents subtend equal angle at the centre.
  • The tangents are equally inclined to the line joining the point and the centre if the circle.

Intersecting Chord and Tangents

Segment of a chord:

If P is a point on a chord AB of a circle, then we say that P divides AB internally into two segments PA and PB.

ICSE X Maths Tangent properties of circles 3

If AB is a chord of a circle and P is a point on AB produced, we say that P divides AB externally into two segments PA and PB.

ICSE X Maths Tangent properties of circles 4

∎ If two chords of a circle intersect internally or externally, then the product of the lengths of their segments are equal.

ICSE X Maths Tangent properties of circles 5

Alternate segments:

In the given figure APB is a tangent to the circle at point at a point P and PQ is a chord

ICSE X Maths Tangent properties of circles 6

The chord PQ divides the circle into two segments PSR and PSQ are called alternate segments.

The angle between a tangent and a chord through the point of contact is equal to an angle in the alternate segment.

∠QPB = ∠PSQ and ∠APQ = ∠PRQ


20. Constructions


21. Volume and Surface Area of Solids

Cylinder:

Solids like circular pillars, circular pipes, circular pencils etc. are said to be in cylindrical shape.

ICSE X Maths Volume and Surface area of Solids 1

Radius of the base = r

Height of the cylinder = h

Curved surface area = 2πrh sq. units

Total surface area = 2πr (r + h) sq. units

Volume = πr2h cubic. units

Hollow Cylinder:

ICSE X Maths Volume and Surface area of Solids 2

External radius = R

Internal radius = r

Height = h

Thickness of the cylinder = R – r

Area of cross section = π (R2 – r2) sq. units

Volume of material = πh (R2 – r2) cubic. units

Curved surface area = 2πh (R+ r) sq. units

Total surface area = 2π (Rh + rh + R2 – r2) sq. units

Cone:

ICSE X Maths Volume and Surface area of Solids 3

Radius of the base = r

Height of the cylinder = h

Slant height = l

l2 = r2 + h2 ⇒ l = ICSE X Maths Volume and Surface area of Solids 5

Curved surface area = πrl sq. units

Total surface area = πr (r + l) sq. units

Volume = ICSE X Maths Volume and Surface area of Solids 4πr2h cubic. Units

Sphere:

Objectives like football, throwball, etc. are said to be the shape of sphere.

ICSE X Maths Volume and Surface area of Solids 6

Radius of Sphere = r

Surface area = 4πr2 sq. units

Volume = ICSE X Maths Volume and Surface area of Solids 7πr3 cubic. Units

Spherical Shell:  

The solid enclosed between two concentric spheres is called spherical shell

ICSE X Maths Volume and Surface area of Solids 8

External radius = R

Internal radius = r

Thickness of the cylinder = R – r

Volume of the material = ICSE X Maths Volume and Surface area of Solids 7 π (R3 – r3) cubic. Units

Hemi sphere:

ICSE X Maths Volume and Surface area of Solids 9

Radius of hemisphere = r

Curved Surface area = 2πr2 sq. units

Surface area = 3πr2 sq. units

Volume = ICSE X Maths Volume and Surface area of Solids 10πr3 cubic. Units


 

22.Trigonometrical Identities

The word Trigonometry derived from Greek word, tri three, gonia angle and metron to measure.

Angle: – The figure formed by two rays meeting at a common end point is an angle.

Naming the sides in a right-angled triangle:

ICSE X Maths Trigonometry 2

AB = Perpendicular =opposite side of θ (opp)

BC = Base = adjacent side of θ(adj)

AC is hypotenuse (hyp)

Trigonometric ratios:

  ICSE X Maths Trigonometry 3

Quotient relations:

ICSE X Maths Trigonometry 4

Trigonometric Identities:
(i) sin
2θ + cos2θ = 1          (ii) sec2θ − tan2θ = 1        (iii) cosec2θ − cot2θ = 1

∎ sin2θ = 1 − cos2θ; cos2θ = 1 – sin2θ

∎ sec2θ = tan2θ + 1; sec2θ – 1 =tan2θ

∎ Cosec2θ = Cot2θ + 1; Cosec2θ – 1 = Cot2θ

Trigonometric tables:

A trigonometric Table Consist of three parts:

  • A column on the extreme left containing degree from 00 to 890.
  • The columns headed by 0’, 6’, 12’, 18’, 24’, 30’, 36’, 42’, 48’ and 54’.
  • Five columns of mean differences, headed by 1’, 2’, 3’, 4’ and 5’

Note:

  • The mean difference is added in case of ‘sines’, ‘tangents’ and ‘secants’
  • The mean difference is subtracted in case of ‘cosines’, ‘cotangents’ and ‘cosecants’

Relation between degrees and minutes:

10 = 60’⇒ 1’ =ICSE X Maths Trigonometry 5

Trigonometric Tables Charts:

By clicking below you get Sin, Cosine and Tangent Tables

 

Arrow Indexing for website Click here

Loader Loading...
EAD Logo Taking too long?

Reload Reload document
| Open Open in new tab


23. Heights and Distances

Horizontal line: A line which is parallel to earth from observation point to object is horizontal line
Line of sight: The line of sight is the line drawn from the eye of an observer to the point in the object viewed by the observer.

Angle of elevation: The line of sight is above the horizontal line and angle between the line of sight and horizontal line is called angle of elevation.

ICSE X Maths Heights and Distances 1

Angle of depression: The line of sight is below the horizontal line and angle between the line of sight and horizontal line is called angle of depression.

ICSE X Maths Heights and Distances 2

Solving procedure:

∎All the objects such as tower, trees, buildings, ships, mountains etc. shall be consider as linear for mathematical convenience.

∎The angle of elevation or angle of depression is considered with reference to the horizontal line.

∎The height of observer neglected, if it is not given in the problem.

∎To find heights and distances we need to draw figures and with the help of these figures we can solve the problems.

 


24. Graphical Representation of Statistical Data

Data: A set of given facts in numerical figures is called data.

Frequency: The number of times an observation occurs is called its frequency.

Frequency Distribution: The tabular arrangement of data showing the frequency of each observation is called its frequency distribution.

Class interval: Each group into which the raw data is condensed is called a class interval.

Class limits: Each class interval is bounded by two figures is called Class limits.

Left side part of class limit is called ‘Lower limit’

Right side part of class limit is called ‘Upper limit’

Inclusive form:  In each class, the data related to both the lower and upper limits are included in the same class, is called Inclusive form.

Ex: 1 – 10, 11 – 20, 21 – 30 etc.

Exclusive form: In each class, the data related to the upper limits are excluded is called Exclusive form.

Ex: 0 – 10, 10 – 20, 20 – 30 etc.

Class size = upper limit – lower limit

Class mark = ICSE X Maths Graphical Representation of Statistical Data 1 [lower limit + upper limit]

Note:

In an inclusive form, Adjustment factor = ICSE X Maths Graphical Representation of Statistical Data 1 [lower limit of one class – upper limit of previous class]

Histogram:  A histogram is a graphical representation of a frequency distribution in an exclusive form, in the form of rectangles with class interval as bases and the corresponding frequencies as heights

Method of drawing a Histogram:

Step-1:  If the given frequency distribution is in inclusive, then convert them into the exclusive form

Step-2: Choose a suitable scale on the X – axis and mark the class intervals on it.

Step-3: Choose a suitable scale on the Y – axis and mark the frequencies on it.

Step-4: Draw rectangle with class intervals as bases and the corresponding frequencies as the corresponding heights.

Example:

ICSE X Maths Graphical Representation of Statistical Data 8

ICSE X Maths Graphical Representation of Statistical Data 2

 

Frequency polygon:

 Let x1, x2, x3, …, xn be the class marks of the given frequency distribution and f1, f2, f3, …, fn be the corresponding frequencies, then plot the points (x1, f1), (x2, f2), …. (xn, fn) on a graph paper and join these points by a line segment. complete the diagram in the form of polygon by taking two or more classes.

Example:

ICSE X Maths Graphical Representation of Statistical Data 6

ICSE X Maths Graphical Representation of Statistical Data 3

Cumulative Frequency curve or Ogive:

In order to represent a frequency distribution by an Ogive, we mark the upper class along X– axis and the corresponding cumulative frequencies along Y – axis and join these points by free hand curve, called Ogive.

Example:

ICSE X Maths Graphical Representation of Statistical Data 7

ICSE X Maths Graphical Representation of Statistical Data 4

 


25. Measures of Central Tendency

Average of a Data:

For a given data a single value of the variable representing the entire data which describes the characteristics of the data is called average of the data.

An average tends to lie centrally with the values of the variable arranged in ascending order of magnitude. So, we call an average a measure of central tendency of the data.

Three measures of central tendency are:   (i) Mean   (ii) Median  and (iii) Mode

Average of a Data:

For a given data a single value of the variable representing the entire data which describes the characteristics of the data is called average of the data.

An average tends to lie centrally with the values of the variable arranged in ascending order of magnitude. So, we call an average a measure of central tendency of the data.

Three measures of central tendency are:   (i) Mean   (ii) Median  and (iii) Mode

Mean

Mean for Un Grouped data:

The mean of ‘n’ observations x1, x2, x3, …, xn is

Mean = ICSE X Maths Mean 1

The Symbol Σ is called ‘sigma’ stands for summation of the data.

Note:

If the mean of a data x1, x2, … xn is m, then

  • Mean of (x1+k), (x2 + k), …. (xn + k) = m + k
  • Mean of (x1−k), (x2 − k), …. (xn − k) = m −k
  • Mean of (k x1), (k x2), …. (k xn) = k m

If x1, x2, …. xn are of n observations occurs f1, f2, …. fn times respectively then mean is

ICSE X Maths Mean 2

 

Mean of grouped data:

Methods of finding mean:

Class mark (mid value) = ICSE X Maths Mean 3

 Direct method: ICSE X Maths Mean 4;  xi is class mark of ith class, fi is frequency of class.

Assumed mean method: ICSE X Maths Mean 5;  di = xi – a and a is assumed mean.

Step – deviation method: ICSE X Maths Mean 6 ; 𝛍i =ICSE X Maths Mean 7  , h is class size.


26. Median, Quartile and Mode

Median

Median is the middle most observation of given data.

For un grouped data:

First, we arrange given observations into ascending or descending order.

If n is odd median = ICSE X Maths Median, Quartiles and Mode 1  observation.

If n is even median =ICSE X Maths Median, Quartiles and Mode 2

For grouped data:

Median =ICSE X Maths Median, Quartiles and Mode 3 , where

l is the lower boundary of median class

f is the frequency of median class

c.f is the preceding cumulative frequency of the median class

h is the class size

Quartiles

The observations which divides the whole set of observations into 4 equal parts are known as Quartiles.

Lower Quartile (First Quartile): If the variates are arranged in ascending order, then the observations lying midway between the lower extreme and the median is called the Lower Quartile. It is denoted by Q1.

If n is Even Q1ICSE X Maths Median, Quartiles and Mode 4 observation

If n is Odd Q1 = ICSE X Maths Median, Quartiles and Mode 5 observation

Middle Quartile: The middle Quartile is the median, denoted by Q2.

Upper Quartile (Third Quartile): If the variates are arranged in ascending order, then the observations lying midway between and the median the upper extreme is called the Upper Quartile. It is denoted by Q3.

If n is Even Q = ICSE X Maths Median, Quartiles and Mode 6  observation

If n is Odd Q1 = ICSE X Maths Median, Quartiles and Mode 7observation

Range: The difference between the biggest and the smallest observations is called the Range.

Interquartile Range: The difference between the upper quartile and Lower quartile is called the inter quartile.

Range = Q3 – Q2

Semi – interquartile range:

Semi – interquartile Range = ½ [ Q3 – Q2]

Estimating median:

Step 1: If the given frequency distribution is not continuous, convert into the continuous form.

Step 2: Prepare the cumulative frequency table.

Step 3: Draw Ogive for the cumulative frequency distribution given above

Step 4: Let sum of the frequencies = N.

Step 5: Mark a point A on Y- axis corresponding to ICSE X Maths Median, Quartiles and Mode 9

Step 6: From A draw Horizontal line to meet Ogive curve at P. From P draw a vertical line PM to meet X – axis at M. Then the abscissa of M gives the Median.

ICSE X Maths Median, Quartiles and Mode 14

Estimating Q1 and Q2:

To locate the value of Q1 on Ogive curve, we mark the point along

Y – axis, corresponding to ICSE X Maths Median, Quartiles and Mode 11  and proceed similarly.

To locate the value of Q3 on Ogive curve, we mark the point along

Y – axis, corresponding to ICSE X Maths Median, Quartiles and Mode 12  and proceed similarly.

ICSE X Maths Median, Quartiles and Mode 10

Mode

The value of a data which is occurred most frequently is called Mode.

Modal class: The class with maximum frequency is called the Modal class.

Estimation of Mode from Histogram:

Step 1: If the given frequency distribution is not continuous, convert it into a continuous form.

Step 2: Draw a histogram to represent the above data.

Step 3: from the upper corner of the highest rectangle, draw line segments

To meet the opposite corners of adjacent rectangles, diagonally

Let these line segments intersect at P.

Step 4: Draw PM perpendicular to X-axis at M, Then the abscissa of M is The Mode

ICSE X Maths Median, Quartiles and Mode 13

 


27. Probability

J Cordon Italian mathematician wrote the first book on probability named “the book of games and chance”.

Probability:

It is the concept which numerically measures the degree of certainty of the occurrence of an event.

Some words in probability:

Experiment: A repeatable procedure with a set of possible results.

Trial: By a trial, we mean experimenting.

Outcome: a possible result of an experiment.

Sample space: All the possible outcomes of an experiment.

Sample point: Just one of the possible outcomes.

Event: One or more outcomes of an experiment.

Probability of occurrence of an Event (Classical definition):

In a random experiment Let S be the sample space and E be the event, then E ⊆ S. The probability of occurrence of E is defined as:

P(E) =  ICSE X Maths Probability 1

Deck of cards: A deck of playing cards consists of 52 cards which are divided into 4 suits of 13 cards each. They are black spade  ICSE X Maths Probability 2   , black clubsICSE X Maths Probability 3, red heart  ICSE X Maths Probability 4   and red diamond ICSE X Maths Probability 5      . The cards in each suit are: 2, 3, 4, 5, 6, 7, 8, 9 ,10, Ace, Jack, Queen and King. Jack, Queen and King are called face (picture) cards.

ICSE X Maths Probability 6

Impossible event: If there is no probability of an event to occur then it is impossible event. Its probability is zero.

Sure or certain event: If the probability of an event is 1 then it is sure or certain event.

Complimentary event: Let E denote the event, ‘not E’ is called complimentary event of E. It is denoted by  . P ( ) = 1 – P(E) ⟹ P ( ) +P(E) = 1.

 0 ≤ P(E) ≤ 1


Visit my Youtube Channel: Click on Below Logo

AS_Tutorioal_Png

11th Class Maths ||CBSE|| Concept

11th Class Maths Concept

11th Class Maths: This note is designed by ‘Basics in Maths’ team. These notes to do help the CBSE 11th class Maths students fall in love with mathematics and overcome their fear.

These notes cover all the topics covered in the CBSE 11th class Maths syllabus and include plenty of formulae and concept to help you solve all the types of11thMath problems asked in the CBSE board and entrance examinations.


1. SETS

Well-defined objects:

  1. All objects in a set must have the same general similarity or property.
  2. Must be able to confirm whether something belongs to the set or not.

 Set: – A collection of well-defined objects is called a set.

∗ Sets are usually denoted by capital English alphabets like A, B, C, and so on.

∗ The elements in set are taken as small English alphabets like a, b, c, and so on.

∗ Set theory was developed by George canter.

• If any object belongs to a set, then it is called an object/element. We denote by ∈ to indicate that it belongs to. If it does not belong to the set then it is denoted by ∉.

Ex: – 1 ∈ N, 0 ∈ W, −1 ∈ Z, 0 ∉ N, etc.

Methods of representing sets:

Roster or table or listed form: –

In this form all the elements of the set are listed, and the elements are separated by commas and enclosed within braces { }.

Ex: – set of vowels in English alphabet = {a, e, I, o, u},

set of even natural numbers less than 10 = {2, 4, 6, 8} etc.

Note: – In roster form, an element is not repeated.  We can list the elements in any order.

Set builder form:

Pointing an element in a set to x (or any symbols such as y, z, etc.) followed by a colon(:), next to write the properties or properties of the elements in that set and placed in flower brackets is called the set builder form.: Or / symbols read as ‘such that’

Ex: – {2, 4, 6, 8} = {x / x is an even and x ∈N, x< 10},

{a, e, i, o, u} = {x : x is a vowel in English alphabet}.

Null set: – (empty set or void set) the set which has no elements is called as a null set. It is denoted by ∅ or { }.

Finite and infinite sets: – If a set contains a finite no. of elements then it is called a finite set. If a set contains an infinite no. of elements then it is called an infinite set.

Ex: – A = {1, 2,3, 4} → finite set

          B = {1, 2, 3, 4….}

 Equal sets: – two sets A and B are said to be equal sets if they have the same elements., and write as A = B

     Ex: – A = {1, 2, 3, 4}, B = {3, 1, 4, 2}

               ⟹ A = B.

Subset: – for any two sets A and B, if every element of set A is in set B, then we can say that A is a subset of B. It is denoted by A ⊂ B.

Ex: – If A = {1, 2, 3, 4, 5, 6, 7, 8}, subsets of A are {1}, {1, 3, 5}, {1,2,3,4}, and so on.

 

Power set: – set of all the subsets of a set A is called the power set of A. It is denoted by p(A).

Ex: – A = {1,2,3}

P(A) = {{1}, {2}, {3}, {1,2}, {2,3}, {1,3}, {1, 2, 3}, ∅}.

Intervals:

∗ Open interval: – (a, b) = {x: a< x <b} → set of rational numbers lies between a and b.

∗ Closed interval: – [a, b] = {x: a≤ x ≤b} → set of rational numbers lies between a and b, including a and b.

∗ Open – closed: – (a, b] = {x: a< x ≤b} → set of rational numbers lies between a and b, excluding a and including b.

∗ Closed-open: -[a, b) = {x: a≤ x <b} → set of rational numbers lies between a and b, including a and excluding b.

Universal set: – A set that contains all the subsets of it under our consideration is called a universal set.  

Cardinal number of a set: – Number of elements in a set A is called the cardinal number of that set A. It is denoted by n(A).

• If a set has n elements, then no. of elements of that set has 2n

Equivalent sets: – two set A and B are said to be equivalent sets if n(A) = n(B) (they have the same cardinal number).

Ex: – A = {1, 2, 3}, B = {a, b, c}

n(A) = 3 and n(B) = 3

∴ A = B.

Venn diagrams:

U = {1, 2, 3, 4, 5, 6}
the relationship between sets is usually represented by means of diagrams which are known as ‘Venn diagrams. These diagrams consist of rectangles and circles. A universal set is represented by rectangles and subsets by circles.

U = {1, 2, 3, 4, 5, 6} A = {1, 2, 3} B = {1, 2}

venn diagrams for cbse xi class


Visit my Youtube Channel: Click on Below Logo

AS_Tutorioal_Png

 

maths ii b concept feature image

TS Inter second year Maths 2B Concept

TS Inter second year 

TS Inter second year: This note is designed by the ‘Basics in Maths’ team. These notes to do help the TS intermediate second-year Maths students fall in love with mathematics and overcome the fear.

These notes cover all the topics covered in the TS I.P.E second year maths 2B syllabus and include plenty of formulae and concept to help you solve all the types of Inter Math problems asked in the I.P.E and entrance examinations.


TS Inter second year

1. CIRCLES

Circle: In a plane, the set of points that are at a constant distance from a fixed point is called a circle.

circle for second year maths

∗ The fixed point is called the centre (C) of the circle and the constant distance is called the radius(r) of the circle

Unit circle: If the radius of the circle is 1 unit, then that circle is called the unit circle.

unit circle

Point Circle: A circle is said to be a point circle if its radius is zero. A point circle contains only one point in the centre of the circle.  •

∗ The equation of the circle with centre (h, k) and radius r is            equation of the circle with centre origin and radius r

(x – h)2 + (y – k)2 = r2                 

∗ The equation of the circle with centre origin and radius r isequation of the circle with centre origin and radius r

x2 + y2 = r2

⇒ x2 + y2 = r2 is called standard form of the circle.

The general equation of the second degree ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, where a, b, f, g, h and c are real numbers, represent a circle iff (i) a = b ≠ 0 (ii) h = 0 and (iii) g2 + f2 + c ≥ 0

∗ The general equation of the circle is x2 + y2 + 2gx + 2fy + c = 0

It’s centre c = (– g, – f) and radius TS inter circle radius 1

∗ The equation of the circle passing through origin is x2 + y2 + 2gx + 2fy = 0.

∗ The equation of the circle whose centre on the x-axis is x2 + y2 + 2gx + c = 0.

∗ The equation of the circle having centre on y-axis is x2 + y2 + 2fy + c = 0.

∗ The circles which have the same centre are called concentric circles.

∗ The equation of the circle concentric with the circle x2 + y2 + 2gx + 2fy + c = 0 is

x2 + y2 + 2gx + 2fy + k = 0.

∗ The length of the intercept made by a circle x2 + y2 + 2gx + 2fy + c = 0 onlength of the intercepts made by circle

  • x -axis is TS inter circle length of intercept by x axis  if g2 – c > 0
  • y -axis is TS inter circle length of intercept by y axisif f2 – c > 0

Note: –

(a) if g2 – c = 0, then A1 A2 = 0 ⇒ the circle touches the x- axis at only one point.

(b)  if f2 – c = 0, then B1 B2 = 0 ⇒ the circle touches the y- axis at only one point.

(c) if g2 – c < 0, then the circle does not meet the x- axis.

(d) if f2 – c < 0, then the circle does not meet the y- axis.

∗ The equation of the circle having the line segment joining A (x1, y1) and B (x2, y2) as a diameter is

equation of the circle passing through end points of diameter

(x – x1) (x – x2) + (y – y1) (y – y2) = 0.

 

∗ Let A, B be any two points on a circle then,secantline and chord of the circle

  • The line is called the secant line of the circle.
  • The line segment is called the chard of the circle.
  • AB is called the length of the chord.

∗ A chord passing through the centre is called the diameter of the circle.

∗ The angle subtended by a chord on the circumference of at any point is equal.

angle sustended by chord at any point

The perpendicular bisector of a chord of a circle is asses through the centre of the circle.

perpendicular bisector of the chord assing through centre

∗ The angle in a semicircle is 900.

angle in a semicircle

 

∗ The equation of the circle passing through three non-collinear points A (x1, y1), B (x2, y2), C (x3, y3) is

equatin of the circle passing through three points

Where ci = − (x2 + y2) and i = 1,2,3

∗ centre of the circle is

centre of the circle lassing through 3 points

Parametric form:

If P (x, y) is a point on the circle with centre (h, k) and radius r, then

X = h + r cosθ, y = k + r sinθ  0 ≤ θ ≤ 2π.

⇒ A point n the circle x2 + y2 = r2 is taken as (r cosθ, r sinθ) and simply denoted by θ.

      Note:

  1.  If the centre of the circle is the origin, then the parametric equations are x = r cosθ, y = r, 0 ≤ θ ≤ 2π.
  2. The point (h + rcosθ1, k + r sin θ1) is referred to as the point θ1 on the circle having the centre (h, k) and radius r.

Notations:

S = x2 + y2 + 2gx + 2fy + c

S1 = xx1 + yy1 + g(x +x1) + f (y +y1) + c

S11 = x12 + y12 + 2gx1 +2fy1 + c

S12 = x1x2 + y1y2 + g(x1 + x2 ) + f (y1 + y2) + c

Position of a point with respect to the circle: ts inter 2B position of point

A circle divides the plane into three parts.
1. The interior of the circle

2. The circumference which is the circular curve.

3. The exterior of the circle.

Power of point:

Les S = 0 be a circle with radius ‘r’ and centre ‘C’ and P (x1, y1) be a point on the circle, then CP – r2 is called the power of point ‘P’ concerning S = 0.

power of point

  • The power of point P (x1, y1) w.r.t. S = 0 is S11.

•Let S = 0 be a circle in a plane and P (x1, y1) be any point in the same plane. thents inter 2B position of the point 2

  1. P lies in the interior of the circle ⇔ S11 < 0.
  2. P lies on the circle ⇔ S11 = 0.
  3. Plies in the exterior of the circle ⇔ S11 > 0.

Secant and tangent of a circle:

Let P be any point on the circle and Q be neighbourhood point of P lying on the circle. join P and Q, then the line PQ is the secant line.ts inter 2B secant and tangent to a circle

The limiting position of the secant line PQ when Q is approached to the point P along the circle is called a tangent to the circle at P.

Length of the tangent:ts inter 2B length of tangent

If P is any point on the circle S = 0 and T is any exterior point of the circle, then PT is called the length of the tangent.

∗ If S = 0 is a circle and P (x1, y1) is an exterior point with respect o S = 0, then the length of the tangent from P (x1, y1) to S =0 is TS inter circle length of tangent

Condition for a line to be a tangent:

  • A straight-line y = mx + c (i) meet the circle x2 + y 2 = r2 in two distinct points if ts inter 2B condition for a line to be a tangent 1
  • Touch the circle x2 + y 2 = rif ts inter 2B condition for a line to be a tangent 2
  • Does not touch the circle x2 + y 2 = r2 in two distinct points if ts inter 2B condition for a line to be a tangent 3

Note:

  1. For all real values of m, the straight line ts inter 2B condition for a line to be a tangent 4 is a tangent to the circle x2 + y2 = r2 and the slope of the line is m.
  2. A straight-line y = mx + c is a tangent to the circle x2 + y2 = r2 if c = ts inter 2B condition for a line to be a tangent 5 .
  3. The equation of a tangent to the circle S ≡ x2 + y2 + 2gx + 2fy + c = 0 having the slope m is  ts inter 2B condition for a line to be a tangent 6where r is the radius of the circle.
  4. The circle S ≡ x2 + y2 + 2gx + 2fy + c = 0 touches (i) x – axis if g2 = c (ii) y – axis if f2= c.

Chord joining two points on a circle:

If P (x1, y1) and Q (x2, y2) are two points on the circle S = 0 then the equation of secant line PQ is S1 + S2 = S12.

Equation of tangent at a point on the circle:

The equation of the tangent at the point (x1, y1) to the circle S ≡ x2 + y2 + 2gx + 2fy + c = 0 is S1 = 0.

The equation of the tangent at the point (x1, y1) to the circle x2 + y2 = r2 is xx1 + yy1 – r2 = 0.

Point of contact:

If a straight-line lx + my + n = 0 touches the circle S ≡ x2 + y2 + 2gx + 2fy + c = 0 at P (x1, y1), then this line is the tangent to the circle S = 0. And the equation of the tangent is

(x1 + g) x + (y1 +f) y + (gx1 + fy1 + c) = 0.

∗ The equation of the chord joining two points θ1, θ2 on the circle x2 + y2 + 2gx + 2fy + c = 0 is

ts inter 2B equation of chord in parametric form1

∗ The equation of the chord joining the points θ1, θ2 on the circle x2 + y2 = r2 is

ts inter 2B equation of chord in parametric form2

∗ The equation of the tangent at P(θ) on the circle x2 + y2 + 2gx + 2fy + c = 0 is

ts inter 2B equation of tangent in parametric form

∗ The equation of the tangent at P(θ) on the circle x2 + y2 = r2 is

x cosθ + y sinθ = r.

Normal:ts inter 2B normal to the circle

The normal at any point P of the circle is the line which is passing through P and is perpendicular to the tangent at P.

 

  • The equation of the normal at P (x1, y1) of the circle S ≡ x2 + y2 + 2gx + 2fy + c = 0 is

(x – x1) (y1 + g) – (y – y1) (x1 + g) = 0.

  • The equation of the normal at P (x1, y1) of the circle x2 + y 2 = r2 is xy1 – yx1 = 0.

Chord of contact and Polar:

∗ If P (x1, y1) is an external point of the circle S ≡ x2 + y2 + 2gx + 2fy + c = 0, then there exists two tangents from P to the circle S = 0.ts inter 2B angents from external point to the circle

 

 

 

 

Chord of contact: –

If the tangents are drawn through P (x1, y1)ts inter 2B chord of contact diagram

 to a circle S = 0 touch the circle at points A and B then the secant line AB is called the chord of contact of P with respect to S = 0

∗ If P (x1, y1) is an external point of the circle S ≡ x2 + y2 + 2gx + 2fy + c = 0, then the equation of the chord of contact of P with respect to S =0 is S1 = 0.

Note:

  1. If the point P (x1, y1) is on the circle S = 0, then the tangent itself can be defined as the chord of contact.
  2. If the point P (x1, y1) s an interior point of the circle S = 0, then the chord of contact does not exist.

Pole and Polar: –ts inter 2B pole and polar of circle

Let S = 0 be a circle and P be any point if any line is drawn through the point Pin the plane other than the centre of S = 0. then the points of intersection meet the circle in two points A and B, of tangents drawn at A and B lie on a line called polar of P and P, is called Pole of polar.

∗ The equation of the polar of P (x1, y1) with respect to the circle S = 0 is S1 = 0.

Note: –

  1. If Plies outside the circle S = 0, then the polar of P meets the circle in two points and the polar becomes the chord f contact of P.
  2. If P lies on the circle S = 0, then the polar P becomes the tangent at P o the circle.
  3. If P lies inside the circle S = 0, then the polar of P does not meet the circle.
  4. If P is the centre of the circle S = 0, then the polar of P does not exist.
  5. The pole of the line lx + my + n = 0 with respect to the circle x2 + y2 = r2 is
  6. The pole of the line lx + my + n = 0 with respect to the circle x2 + y2 + 2gx + 2fy + c = 0 is
  7. The polar of P (x1, y1) with respect to the circle S = 0 passes through Q (x2, y2)  ⟺ polar of Q passes through P.

Conjugate points: Two P and Q are said to be conjugate points with respect to the circle S = 0, if the polar of P with respect to S = 0 passes through Q.

 ⇒ The condition for the points P (x1, y1), Q (x2, y2) to be conjugate with respect to the circle S = 0 is S12 = 0.

Conjugate lines: Two lines L1 = 0 and L2 = 0 are said to conjugate lines with respect to the circle S = 0 if the pole of L1 = 0 is lies on L2 = 0.

The condition for the lines l1x + m1y + n1 = 0 and l2x + m2y + n2 = 0 to be conjugate with respect to the circle S ≡ x2 + y2 + 2gx + 2fy + c = 0 is

                                                r2 (l1l2 + m1m2) = (l1g + m1f – n1) (l2g + m2f – n2)

⟹ The condition for the lines l1x + m1y + n1 = 0 and l2x + m2y + n2 = 0 to be conjugate with respect to the circle S ≡ x2 + y2 = r2 is  r2 (l1l2 + m1m2) = n1n2

Inverse points: Let S = 0 be a circle with centre C and radius r. two points P and Q are said to be inverse points with respect to the circle S = 0 if

  1. C, P, Q are collinear.
  2. P, Q lies on the same side of C.
  3. CQ = r2.

⟹  If lies inside of the circle S = 0, then Q lies outside of the circle.

⟹  If P lies on the circle S = 0, then P =Q.

⟹  Let S = 0 be a circle with centre C and radius r. The polar of P meets the line CP in Q iff  P, Q is inverse points.

⟹  f P, Q are inverse points with respect to S = 0, then P, Q are conjugate points with respect to the circle S = 0.

⟹  If P, Q are inverse points with respect to S = 0, then Q is the foot of the perpendicular from P on the polar of P with respect to the circle S = 0.

Equation of the chord with the given middle point:

The equation of the chord of the circle S = 0 having P (x1, y1) as its midpoint is S1 = S11.

Common tangents to the circle:ts inter maths 2B common tangent to the circle

⟹ A straight line L = 0 is said to be a common tangent to the circle S = 0 and S= 0 if it is a tangent to both S = 0 and S’ = 0.

Two circles are said to touch each other if they have only one common tangent.

The relative position of two circles:

Let C1, C2 centres and r1, r2 be the radii of two circles S = 0 and S’ = 0respectively.

1.If C1C2 > r1+ r2, then two circles do not intersect.ts inter maths 2B does not meet the circles

⟹2 direct common tangents and

2 transverse common tangents

  Total 4 common tangents

 ⟹P divides C1C2 in the ratio r1: r2 internally   

     Here P is called the internal centre of similitude (I.C.S)

  ⟹ Q divides C1C2 in the ratio r1: r2 externally   

     Here Q is called the external centre of similitude (E.C.S)               

2.If C1C2 = r1+ r2, two circles touch each otherts inter maths 2B the circles touch each other externally

   ⟹ Q divides C1C2 in the ratio r1: r2 externally  

⟹ two direct common tangents and one common tangent. Total 3 tangents

  Here Q is called the external centre of similitude (E.C.S)

3. ts inter maths 2B the circles intersects at distinct points1

⟹ two direct common tangentsts inter maths 2B the circles intersects at distinct points

    Here Q is called the external centre of similitude (E.C.S)
Q divides C1C2 in the ratio r1: r2 externally   

⟹ internal centre of similitude does not exist.

4. ts inter maths 2B the circles touch internally1ts inter maths 2B the circles touch internally

⟹ only one common tangent

internal centre of similitude does not exist.

 

5. ts inter maths 2B one circle lies inside the other circle1     ts inter maths 2B one circle liec inside the other circle

no. of common tangents zero.

 

Note: the combined equation of the pair of tangents drawn from an external point P (x1, y1) to the circle S = 0 is S S11 = S12.

 


2.SYSTEM OF CIRCLES

A set of circles is said to be a system of circles if it contains at least two circles.

The angle between two intersecting circles:ts inter 2B angle between two circles diagram

If two circles S = 0 and S’ = 0 intersect at P then the angle between the tangents of two circles at P is called angle between the circles at P.

⟹ If two circles S = 0 and S’ = 0 intersect at P and Q then the angle between the tangents of two circles at P and Q are equal.

⟹ If d is the distance between the centres of the two intersecting circles with radii r1, r2 and θ is the angle between the circles then.

ts inter 2B angle between two circles when d r1 r2 given

⟹ If θ is the angle between the circles x2 + y2 + 2gx + 2fy + c = 0 and x2 + y2 + 2g’x + 2f’y + c’ = 0 then

ts inter 2B angle between two circles when gg' ff' cc' known

⟹ Two intersecting lines are said to be Orthogonal if the angle between the circles is a right angle.

Condition for the orthogonality:

⟹ The condition that the two circles x2 + y2 + 2gx + 2fy + c = 0 and x2 + y2 + 2g’x + 2f’y + c’ = 0 cut each other orthogonally is 2gg’ + 2ff’ = c + c’.

⟹ If d is the distance between the centres of the two intersecting circles with radii r1, r2. Two circles cut orthogonally if d2 = r12 + r22.

∎  If S = 0, S’ = 0 are two circles intersecting at two distinct points, then S – S’ = 0 represents a common chord of these two circles.

∎ If S = 0, S’ = 0 are two circles touch each other, then S – S’ = 0 represents a common tangent of these two circles.

∎ If S ≡ x2 + y2 + 2gx + 2fy + c =  0 and L ≡ lx + my + n = 0 are the equation of the circle and  a line respectively intersecting each other, then S + λ L = 0 represent a circle passing through the point intersection of  S = 0 and L = 0 ∀ λ ∈ ℛ.

Radical axes:ts inter 2B radical axis diagram

The radical axis of two circles s defined as the locus of the point which moves so that its powers with respect to the two circles are equal.

(OR)
The locus of a point, for which the powers with respect to given non-concentric circles are equal, is a straight line is called Radical axis of the given circles.

∎ The equation of Radical axis f the circles S = 0 and S’ = 0 is S – S’ = 0.

The radical axis of any two circles is perpendicular to the line joining their centres.

The lengths of tangents from a point on the radical axis of two circles are equal if exist.

Radical axis of two circles bisects all common tangents of the two circles.

∎ If the centres of any three circles are non-collinear then the radical axis of each pair of circles chosen from these three circles re concurrent.

ts inter 2B radical axes of three circles are concurrent

Radical centre:  The point of concurrence of radical axes of each pair of three circles is called radical centre (see above figure).

∎ If the circle S = 0 cuts the each of the two circle S’ = 0 and S’’ =0 orthogonally then the centre of S =0 lies on the radical axis of S’ = 0 and S’’ = 0.

∎ Radical axis of two circles is

  • The ’common chord’ if the two circles intersect at two distinct points.
  • The ‘common tangent’ at the point of contact if the two circles touch each other.

The radical axis of any two circles bisects the line joining the points of contact of common tangents to the circles.

Let S = 0, S’ = 0 and S’’ =0 be three circles whose centres are non- collinear and no two circles of these are intersecting then the circles having

  • Radical centre of these circles as the centre of the circle.
  • Length of the tangent from the radical centre to any one of these three circles cuts the given three circles orthogonally.

CONIC SECTIONSts inter 2B conic sections diagram

Conic: The locus of a point moving on a plane such that its distance from a fixed point and a fixed straight line is in the constant ratio is called Conic.

OR

The locus of a point moving on a plane such that its distance from a fixed point and a fixed line on the plane are in a constant ratio ‘e’, is called a Conic.

Focus: The fixed point is called focus and it is denoted by S.

Directrix: The fixed straight line is called the directrix.

Eccentricity: The constant ratio is called eccentricity and it is denoted by ‘e’.

Conic is the locus of a point P moving on a plane such that SP/PM = e, PM is the perpendicular distance from P to directrix at M.

If e = 1, then the conic is parabola.

if 0 < e < 1, then the conic is Ellipse.

if e > 1, then the conic is Hyperbola.


3.PARABOLA

 

If e = 1, then the conic is parabola.TS inter 2B parabola diagram

  • The standard form of parabola is y2 = 4ax.
  • Focus S = (a. 0).
  • Equation of directrix is x + a = 0.
  • Vertex A = (0, 0) and A is the mid-point of SZ.

• Equation of the parabola with focus (α, β) and directrix lx + my + n = 0 is

ts inter 2B equation of the parabola 1

  • If the focus is situated on the left side of the directrix, the equation of the parabola with vertex as the origin and the axis is X-axis is y2 = – 4ax.
  • The vertex being the origin, if the axis of the parabola is taken as Y – axis, equation of the parabola is x2 = 4 ay or x2 = – 4 ay according to the focus is above or below the X-axis.

Nature of the curve:

The nature of the parabola f the equation y2 = 4 ax (a>0)

  • F y = 0, then 4 ax = 0 and x = 0

∴ the curve passes through the origin.

  • If x = 0, then y2 = 0. Which gives y = 0. Y – axis is the tangent to the parabola at origin.
  • Let P(x, y) be any point on the parabola (a>0) and y2 = 4 ax, we have x ≥ 0 and ts inter 2B equation of the parabola 2

∴ for any positive real value of x, we obtain two value of y of equal magnitude but opposite in sign. This shows that the curve is symmetric about X-axis and lies in the first and fourth quadrants.

The curve does not exist on the left side of the Y-axis since x ≥ 0 for any point (x, y) on the parabola.

Chord: The line segment joining two points on a parabola is called a chord.

Focal chord: A chord which is passing through focus is called Focal Chord.

Double ordinate: A chord through a point P on the parabola, which is perpendicular to the axis of the parabola is called Double ordinate.

Latus rectum: The double ordinate passing through the focus is called Latus rectum.

⟹ Length of Latus rectum = 4a.

Various forms of the parabola

1. y2 = 4axTS inter 2B parabola diagram1

    focus: (a, 0)

equation of directrix: x + a = 0

axis of parabola: y = 0

    vertex: (0. 0)

2. y2 = −4axTS inter 2B parabola diagram2

equation of directrix: x − a = 0                                 

  focus: (−a, 0)

axis of parabola: y = 0

vertex: (0. 0)

3. x2 = 4ayTS inter 2B parabola diagram3

    focus: (0, a)

equation of directrix: y + a = 0

    axis of parabola: x = 0

vertex: (0. 0)

4. x2 = −4axTS inter 2B parabola diagram4

    focus: (0, −a)

equation of directrix: y − a = 0

    vertex:  (0. 0)    axis of parabola: x = 0

5. (y – k) 2 = 4a (x – h)TS inter 2B parabola diagram5

    focus: (h + a, k)

equation of directrix: x – h + a = 0

axis of parabola: y – k = 0

vertex: (h. k)

6. (y – k) 2 = −4a (x – h)TS inter 2B parabola diagram6

  focus: (h – a, k)
equation of directrix: x – h – a = 0
 

axis of parabola: y – k = 0

vertex: (h. k)

7. (x – h) 2 = 4a (y – k)TS inter 2B parabola diagram7

    focus: (h, k + a)

equation of directrix: y – k + a = 0

axis of parabola: x – h = 0

vertex: (h. k)

8. (x – h)2 = −4a (y – k) TS inter 2B parabola diagram8

    focus: (h, k – a)

equation of directrix: y – k – a = 0

    vertex: (h. k)
axis of parabola: x – h =0

9. TS inter 2B parabola equation focus is in quadrantTS inter 2B parabola diagram9

    focus: (α, β)

equation of directrix: lx + my + n = 0

axis of parabola: m (x – α) – l (y – β) = 0

vertex: A

Note:  

  1. Equation of the parabola whose axis parallel to X – axis is x = ly2 + my + n.
  2. Equation of the parabola whose axis parallel to Y – axis is y = lx2 + mx + n.

Focal distance:  The distance of a point on the parabola from its focus is called Focal distance.

⟹ Focal distance of parabola s x1 + a

Parametric equations of a parabola:

The point (at2, 2at) satisfy the equation y2 = 4ax, the parametric equations of parabola are  x = at2, y = 2at. The point P(at2, 2at) is generally denoted by the point ‘t’ or P(t).

Notation:

  1. S ≡ y2 – 4 ax
  2. S1 ≡yy1 – 2a (x + x1)
  3. S12 ≡ y1y2 – 2a (x1 + x2)
  4. S11 ≡ y12 – 4 ax1

Equation of a tangent and normal at a point on the parabola:

∎ y = mx + c is a tangent to the parabola y2 = 4ax, then c = a/m or a =cm, and the point of contact is (a/m2, 2a/m).

∎ if m = 0, the line y = c is parallel to the axis of the parabola (i.e., x – axis)

y = c ⟹ c2 = 4ax ⟹ x = c2 /4a

∴ point of contact is (c2/4a, c).

∎ if m ≠ 0 and c = 0, then

Y = mx ⟹ x = 4a/m2 and y = 4a/m

∴ point of contact is (4a/m2, 4a/m).

∎ The equation of the chord joining the points (x1, y1) and (x2, y2) is S1 + S2 = S12.

∎ The equation of the tangent at P (x1, y1) to the parabola S = 0 is S1= 0.

∎ The equation of the normal at P (x1, y1) is (y – y1) = – y1/2a (x – x1).

Parametric form:

∎ The equation of the tangent at a point ‘t’ on the parabola y2 = 4ax is x – yt + at2 = 0.

∎ Equation of the normal at a point ‘t’ on the parabola y2 = 4ax is y + xt = 2at + at3.

∎ The condition for the straight-line lx + my + n = 0 to be a tangent to the parabola y2 = 4 ax is

am2 = nl and point of contact is (n/l, –2 am/l).

∎ common tangent to the parabolas y2 = 4 ax and x2 = 4 by is x a1/3 + y b1/3 + a2/3 b2/3 = 0.

∎ The equation of the chord of contact of the external point (x1, y1) w.r. t parabola S = 0 is S1 = 0.

∎ The equation of the polar of the point (x1, y1) w.r. t parabola S = 0 is S1 = 0.

∎ The pole of the line lx + my + n = 0 w.r.t. parabola y2 = 4ax is (n/l, -2am/l).

∎ If two points P (x1, y1), Q (x2, y2) are conjugate points w.r.t. parabola S = 0, then S12 = 0.

∎ The lines l1x + m1y + n1 = 0 and l2x + m2y + n2 = 0 are conjugate lines with respect to the parabola y2 = 4 ax, then l1n2 + l2n1 = 2a m1m2.


4.ELLIPSE

Ellipse: A conic with eccentricity less than unity s called Ellipse.TS inter 2B ellipse diagram

∎ Equation of Ellipse in standard form is TS inter 2B standard form of ellipse equation

⇒b2 = a2 (1 – e2) ⇒ e2 – 1 = -b2/a2

TS inter 2B standard form of ellipse equation2

Major and Minor axis:

⟹ The line segment AA’ and BB’ of length 2a and 2b respectively are axes of the Ellipse.

⟹ If a > b AA’ is called Major axis and BB’ is called Minor axis and vice-versa if a<b.

Various form of Ellipse:

1.TS inter 2B ellipse form equation1TS inter 2B ellipse diagram1

Major axis: along the x-axis

Length of Major axis:2a

Minor axis: along y – axis

Length of Minor Axis:2b

Centre: (0, 0)

Foci: S = (ae, 0) and S’ = (–ae, 0)

Equation of directrices: x = a/e and x = –a/e

Eccentricty: TS inter 2B eccentricity of ellipse form equation1

2.TS inter 2B ellipse form equation2     TS inter 2B ellipse diagram2

Major axis: along y – axis

Length of Major axis:2b

Minor axis: along x – axis

Length of Minor Axis:2a

Centre: (0, 0)

Foci: S = (0, be) and S’ = (0, –be)

Equation of directrices: x = b/e and x = –b/e

Eccentricty:TS inter 2B eccentricity of ellipse form equation2

Centre not at the origin

3.TS inter 2B ellipse form equation3TS inter 2B ellipse diagram3

Major axis: along with y = k

Length of Major axis:2a

Minor axis: along x = h

Length of Minor Axis:2b

Centre: (h, k)

Foci: S = (h +ae, k) and S’ = (h – ae, k)

Equation of directrices: x = h + a/e and x = h – a/e

Eccentricty:TS inter 2B eccentricity of ellipse form equation3

4.TS inter 2B eccentricity of ellipse form equation4TS inter 2B ellipse diagram4

Major axis: along x = h

Length of Major axis:2b

Minor axis: along with y = k

Length of Minor Axis:2a

Centre: (h, k)

Foci: S = (h, k + be) and S’ = (h, k – be)

Equation of directrices: xy = k + b/e and y = k – b/e

Eccentricty: TS inter 2B eccentricity of ellipse form equation4

Chord: The line segment joining two points on a parabola is called a  chord of Ellipse.

Focal chord: A chord which is passing through one of the foci is called Focal Chord.

Latus rectum: A focal chord perpendicular to the major axis of the Ellipse is called Latus Rectum. Ellipse has two latera recta.

Length of the Latus rectum:

1.The coordinates of the four ends of the latera recta of the ellipse TS inter 2B eccentricity of ellipse form equation5

L = (ae, b2/a), L’ = (ae, -b2/a) and L1 = (-ae, b2/a), L1’= (-ae, -b2/a).

length of the Latus rectum = 2b2/a.

2.length of the Latus rectum of an ellipse  TS inter 2B eccentricity of ellipse form equation6 is 2a2/b and the coordinates of the four ends of the latera recta are

L = (a2/b, be), L’ = (-a2/b, be) and L1 = (a2/b, -be), L1’ = (-a2/b, -be).

3. The equation of the Latus rectum of the Ellipse  TS inter 2B eccentricity of ellipse form equation5 through S is x = ae and through S’ is x = -ae.

4. The equation of the Latus rectum of the Ellipse  TS inter 2B eccentricity of ellipse form equation6 through S is y = be and through S’ is y = -be.

5. If P (x, y) is any point on the Ellipse TS inter 2B ellipse equation without condition  whose foci are S and S’, then SP +S’P is constant.

Auxiliary circle: The circle described on the major axis of an Ellipse as the diameter is called the Auxiliary circle of the Ellipse. The Auxiliary circle of the Ellipse TS inter 2B eccentricity of ellipse form equation5 is x2 + y2 = a2.

Parametric equations:  The parametric equations of the Ellipse TS inter 2B ellipse equation without condition are x = a cosθ and y = b sinθ.

Notation:

TS inter 2B ellipse notation

Equation of Tangent and Normal

 The equation of any tangent to the Ellipse can be written as TS inter 2B quation of the tangent to ellipse

 The condition for a straight-line y = mx + c to be a tangent to the Ellipse    TS inter 2B ellipse equation without condition   is  c2 = am2 + b2.

∎ The point of contact of two parallel tangents to the Ellipse are (-a2m/c, b2/c) and (a2m/c, -b2/c)

∎ The equation of the chord joining two points (x1, y1) and (x2, y2) on the Ellipse S = 0 is S1 + S2 = S12.

∎ The equation of the Normal at P (x1, y1) to the Ellipse is TS inter2B equation of the normal to the ellipse

∎ Equation of the tangent at P(θ) on the Ellipse   TS inter2B equation of the tangentto the ellipse2 

∎ Equation of the normal at P(θ) on the Ellipse S = 0 isTS inter2B equation of the normal to the ellipse2

∎ When θ = 0, π; equation of Normal is y =0.

∎ When θ = π/2, 3π/2; equation of Normal is x =0.

∎ The condition for the line lx + my + n = 0 to be a tangent the Ellipse S = 0 is a2l2 + b2m2 = n2.

∎ The condition for the line x cosα + y sinα = p to be a tangent the Ellipse S = 0 is a2 cos2 α + b2 sin2 α = p2.

∎ The pole of the line lx + my + n = 0 with respect to the Ellipse S = 0 is (-a2l/n, -b2m/n).

∎ The condition for the two lines l1x + m1y + n1 = 0 and l2x + m2y + n2 = 0 to be conjugate with respect to the Ellipse S = 0 is a2l1l2 + b2m1m2 = n1n2. a2l1l2.


5.HYPERBOLA

Hyperbola: Hyperbola is a conic in which the eccentricity is greater than the unity.TS inter 2B Hyperbola diagram
Standard form of Hyperbola:

Equation of Hyperbola in standard form is TS inter 2B equation of standard form of Hyperbola

 Centre: C (0, 0)

Foci: (± ae, 0)

Directrix: x = ± a/e.

Ecdntricity: TS inter 2B eccentricity of Hyperbola

Notation:    TS inter 2B Hyperbola notation

Rectangular Hyperbola:

If in a Hyperbola the length of the transverse axis (2a) is equal to the length of the conjugate axis(2b), then the hyperbola is called rectangular hyperbola.

Its equation is x2 – y2 = a2 and eccentricity is sqrt 2 .

Auxiliary circle: The circle described on the transverse axis of hyperbola as diameter is called the auxiliary circle of the hyperbola.

The equation of the auxiliary circle of S = 0 is x2 + y2 = a2.

Parametric equations:  The parametric equations of the Parabola S = 0 are x = a secθ and y = b tanθ.

Conjugate Hyperbola:

The hyperbola whose transverse and conjugate axis are respectively the conjugate and transverse axis of a given hyperbola is called a conjugate hyperbola.

The equation of hyperbola conjugate to   S ≡  is S’ ≡

∎ For TS inter 2B equation of Hyperbola2

The transverse axis lies on along X-axis and its length is 2a.

The conjugate axis lies on along Y-axis and its length is 2b.
∎ For  TS inter 2B equation of conjugate Hyperbola

 The transverse axis lies on along Y-axis and its length is 2b.

The conjugate axis lies on along X-axis and its length is 2a.

Various form of Hyperbola:TS inter 2B various forms of Hyperbola diagram

Let TS inter 2B equation of Hyperbola2 and      TS inter 2B equation of conjugate Hyperbola

1.Hyperbola TS inter 2B equation of Hyperbola2

The transverse axis along X-axis: y =0

Length of the transverse axis:2a

The conjugate axis along Y-axis: x = 0

Length of the conjugate axis: 2b

Centre: (0, 0)

Foci: (± ae, 0)

Equation of the directrices: x = ± a/e

Eccentricity:TS inter 2B eccentricity of Hyperbola

2.Conjugate Hyperbola TS inter 2B equation of conjugate Hyperbola

The transverse axis along Y-axis: x = 0

Length of the transverse axis:2b

The conjugate axis along X-axis: y = 0

Length of the conjugate axis: 2a

Centre: (0, 0)

Foci: (0, ± be)

Equation of the directrices: y = ± b/e

Eccentricity:TS inter 2B eccentricity of conjugate Hyperbola

Centre not at the origin:

3.Hyperbola TS inter 2B equation of standard form of Hyperbola1

The transverse axis along X-axis: y = k

Length of the transverse axis:2a

The conjugate axis along Y-axis: x = h

Length of the conjugate axis:2b

Centre: (h, k)

Foci: (h± ae, k)

Equation of the directrices: x = h± a/e

Eccentricity:TS inter 2B eccentricity of Hyperbola

4.Hyperbola TS inter 2B equation of conjugate Hyperbola2

The transverse axis along Y-axis: x = h

Length of the transverse axis:2b

The conjugate axis along X-axis: y = k

Length of the conjugate axis: 2a

Centre: (h, k)

Foci: (h, k ± be)

Equation of the directrices: y = k± b/e

Eccentricity: TS inter 2B eccentricity of conjugate Hyperbola

Equation of tangent and normal at a point on the Hyperbola:

∎ The equation of the tangent at P (x1, y1) to the hyperbola S = 0 is S1 = 0.

∎ The equation of the tangent at P(θ) on the hyperbola S = 0 is TS inter 2B equation of tangent to the Hyperbola

∎ The equation of the Normal at P (x1, y1) to the hyperbola S = 0 is TS inter 2B equation of normal to the Hyperbola

∎ Equation of the normal at P(θ) on the Hyperbola S = 0 is TS inter 2B equation of normal to the Hyperbola2

∎ The condition for a straight-line y = mx + c to be a tangent to the hyperbola S = 0 is c2 = am2 − b2.

Asymptotes of a hyperbola:

The equations of asymptotes of hyperbola S = 0 are    TS inter 2B asymptotes of Hyperbola  and the joint equation of asymptotes is TS inter 2B asymptotes of Hyperbola2


6. INTEGRATION

∎ Let E be a subset of R such that E contains a right or left the neighbourhood of each of its points and let f: E → R be a function. If there is a function F on E such that F’(x) = f(x) ∀ x ∈ E, then we call F an anti-derivative of f or a primitive of f.

Indefinite integral: Let f: I→R. Suppose that f has an antiderivative F on I. Then we say that f has an integral on I and for any real constant c, we call F + c an indefinite integral of over I, denote it by    ∫f(x) dx and read it as ‘integral’ f(x) dx.

∫f = ∫f(x) dx = F(x) + c. here c is called constant of integration.

In the indefinite integral ∫f(x)dx, f is called ‘integrand’ and x is called the variable of integration.

⟹  TS inte 2B integration formula 1

⟹ if f: I⟶R is differentiable on I, then ∫f’(x)dx = f(x) + c.

Standard forms:

TS inte 2B integration standard forms

Properties of integrals:

∎ ∫ (f ±g) (x) dx = ∫f(x) dx ± ∫g(x) dx + c

∎ ∫(af) (x) dx = a ∫f(x) dx + c

∎ ∫ (f1 + f2 + … + fn) (x) dx = ∫f1(x) dx + ∫f2(x) dx + … +∫fn(x) dx +c

∎ ∫f(g(x)) g’(x) dx = F(g(x)) + c

∎ ∫f(ax + b) dx = 1/a F(ax +b) + c

Some important formulae:

  1. ∫eax dx = 1/a eax + c
  2. ∫sin (ax + b) dx = -1/a cos (ax + b) + c
  3. ∫cos (ax + b) dx = 1/a sin (ax + b) + c
  4. ∫sec2 (ax + b) dx = 1/a tan (ax + b) + c
  5. ∫ cosec2 (ax + b) dx = 1/a cot (ax + b) + c
  6. ∫cosec (ax + b) cot (ax + b) dx = -1/a cosec (ax + b) + c
  7. ∫sec (ax + b) tan (ax + b) dx = 1/a sec (ax + b) + c

Inter 2B Integrations Formulae

Integration by parts:

Let u, v real valued differentiable functions in I. Suppose that u,v has an integral on I, then uv’ has an integral on I and

∫(uv’) (x) dx = (uv) – ∫(u’v) (x) dx + c or ∫(uv) dx = u ∫v dx – ∫ [u’ ∫v dx] dx + c

Integration of exponential functions:

∫ex dx = ex + c; ∫x ex dx = (x – 1) ex + c

∫ ex [f(x) +f’(x)] dx = ex f(x) + c

Integration of logarithmic functions:

∫log x dx = x log x – x + c

Integration of inverse trigonometric functions:

TS inte 2B integration of inverse trigonometric functions

Evaluation of integrals form  : TS inte 2B evaluation of integration form1

Working rule:  reduce ax2 + bx + c to the form of a[(x + α)2 + β] and then integrate using the substitution t = x + α.

Evaluation of integrals form TS inte 2B evaluation of integration form2

Working rule:

Case(i) if a >0 and b2 – 4ac < 0, then reduce ax2 + bx + c to the form of a[(x + α)2 + β] and then integrate.

Case(ii) if a <0 and b2 – 4ac >0, then reduce ax2 + bx + c to the form of (-a) [ β – (x + α)2 +] and then integrate.

Evaluation of integrals form TS inte 2B evaluation of integration form3

Working rule:  write px + q in the form of A (ax2 + bx +c)’ + B, then integrate.

Evaluation of integrals form  TS inte 2B evaluation of integration form4

Working rule:  write cos x =cos2(x/2) – sin2(x/2) and sin x = 2 sin(x/2) cos (x/2)

Put t = tan(x/2), then dt = ½ sec2 (x/2) dx

Cos x = 1 – t2 / 1 + t2, sin x = 2t/1 + t2 then integrate.

Evaluation of integrals form   TS inte 2B evaluation of integration form5

Working rule:  t = sqrt. (px + q and then integrate.

Evaluation of integrals form    TS inte 2B evaluation of integration form6

Working rule:  we find real numbers A, B and C such that

(a cos x + b sin x + c) = A(d cos x + e sin x +f)’ + B(d cos x + e sin x +f) + C then by substituting this expression in the  integrand, evaluate the integral.

Integration – partial fraction method:

Let R(x) = f(x) / g(x), g(x) ≠ 0 where f, g are polynomials. If degree of f(x) ≥degree of g(x), then divide f(x) by g(x) by synthetic division method and find polynomials.

Q(x) and h(x) such that f(x) = Q (x) g(x) + h(x) here h = 0 or h ≠ 0 and degree h(x) < degree of g(x). Then R(x) =Q(x) + h(x)/g(x)

We get solution of h(x) / g(x) using partial fractions and then integrate.

Partial fractions:

∎ If R(x) = f(x) / g(x) is proper fraction, then

Case(i): – For every factor of g(x) of the form (ax + b) n, there will be a sum of n partial fractions of the form:

TS inte 2B integration partial fractions 1

Case(ii): – For every factor of g(x) of the form (ax2 + bx + c) n, there will be a sum of n partial fractions of the form:

TS inte 2B integration partial fractions 2

∎ If R(x) = f(x) / g(x) is improper fraction, then

Case (i): – If degree f(x) = degree of g(x), then f(x)/g(x) = k + h(x)/g(x) where k is the quotient of the highest degree term of f(x) and g(x).

Case (ii): – If f(x) > g(x)

R(x) =f(x) /g(x) = Q(x) + h(x)/g(x)

Reduction formulas:

TS inte 2B integration reduction formulae


7.DEFINITE INTEGRATION

Partition: Let a, b∈ R be such that a < b. Then, a finite set P = {x0, x1, …, x i- 1, xi, xi + 1, …, xn} of elements of [a, b] is called to be a partition of [a, b] if a =  x0 <  x1 < … < x i- 1 <  xi <  xi + 1 < … < xn = b.

Norm: if {x0, x1, …, xn} is a partition of [a, b], then the norm of the partition P, denoted by ∥P∥, is defined by ∥P∥ = max {x1 – x0, x2 – x1, …, xn – xn-1}. We donate the set of all partitions of [a, b] by 𝒫 ([a, b]).

Definite integral:
Riemann sum:
Let f: [a, b] → R be a bounded function for all x in [a, b]. Let P = {x0, x1, …, x i- 1, xi, xi + 1, …, xn} be partition of [a, b], and t ∈ [xi-1, xi], for I = 1, 2, …, n. A sum of the form TS inter equation of Riemann sum is called Riemann sum of f relative to P.

Let f is Riemann integrable on [a, b]. if there exists a real number A such that S (P, f) approaches A as ∥P∥ approaches to ‘0’. In other words, given ϵ > 0, there is a δ > 0 such that TS inter definite integration equation 1 for any partition P of [a, b] with ∥P∥ < δ irrespective of the choice of ti in [xi-1, xi]. Such an A, if exists, is unique and is denoted by TS inter definite integration 2, it is read as the definite integral of f from a to b. an a is called the lower limit and b is called the upper limit. The function f inTS inter definite integration 2  is called ‘integrand’.    

if f: [a, b] → R is continuous, then is exists.

∎ If f is continuous on [0, p] where p is a positive integer then TS inter definite integration 3

The fundamental theorem of integral calculus:

If f is integrable on [a, b] and if there is a differentiable function F on [a, b] such that F = f, then TS inter definite integration 1           

we write TS inter definite integration 2          

properties of definite integrals:

TS inter properties of definite integration

∎ Let f: [a, b] → R be bounded. Let c ∈ (a, b). then f is integrable on [a, b] if and only if it is integrable on [a, c] as well as on [c, b] and in this case

TS inter definite integration 3

Method of substitution:  Let g: [c, d] → R have continuous derivative on [c, d]. Let f: g([c, d]) → R be continuous. Then (fog) g’ is integrable on [c, d] and TS inter definite integration 4                                                      

∎ Let f be integrable on [a, b]. Then the function h, defined on [a, b] as h(x) = f (a + b – x)

for all x in [a, b] and TS inter definite integration 5

∎ Let f be integrable on [0, a]. Then the function h, defined on [0, a] as h(x) = f (a – x)

for all x in [a, b] and TS inter definite integration 6

∎ Let f: [-a, a] → R be integrable on [0, a]. Suppose that f is either odd or even. Then f is integrable on  [-a, a] and TS inter definite integration 7

∎ Let f: [0,2 a] → R be integrable on [0, a].

  • If f (2a – x) = f(x) for all x in [a, 2a] then f is integrable on [0, 2a] and TS inter definite integration 8
  • If f (2a – x) = – f(x) for all x in [a, 2a] then f is integrable on [0, 2a] and TS inter definite integration 9

∎ If f and g are integrable on [a, b], then their product fig is integrable on [a, b].

Integration by parts:

TS inter definite integration by parts

∎ Let f: R→ R be a continuous periodic function and T be the period of it. Then any positive integer n

TS inter definite integration 10

Reduction formulae:

∎ Let n≥2 be an integer, then TS inter definite integration reduction 1

∎ Let m and n be positive integers, then

TS inter definite integration reduction 2

Areas under curves: 
(i)If f: [a, b] → [0, ∞) is continuous, then the area A of the region bounded by the curve y = f(x), the X-axis and the line x = a and x =b is given by

A =TS inter definite integration 2TS inter definite integration area of curves1

(ii) If f: [a, b] → (−∞, 0] is continuous, then the graphs of y = f(x)and y = − f(x) on [a, b] are symmetric about the X-axis. So, the area bounded by the graph of y = f(x), the X-axis and the lines x = a, x =b is same as the area bounded by the graph of y = – f(x), the X-axis and the lines x = a and y = b which is given by A = TS inter definite integration area of curves3TS inter definite integration area of curves2

From (i) and (ii) A = TS inter definite integration area of curves4

(iii) Let f: [a, b] → R be continuous and f(x) ≥ 0 ∀ x ∈ [a, c] and f(x) ≤ 0 ∀ x∈ [c, b] where a < c < b. Then the area of the region bounded by the curve y= f(x), the X – axis, and the lines x = a and x = b is given by TS inter definite integration area of curves5

TS inter definite integration area of curves6

Area of region =A = TS inter definite integration area of curves7

(iv) Let f: [a, b] → R and g: [a, b] → R be continuous f(x) ≤ g(x) ∀ x∈ [a, b]. Then the area f the region bounded by the curve y = f(x), y = g(x) and TS inter definite integration area of curves9the lines x = a, x = b is given by

TS inter definite integration area of curves8

 

(v) Let f and g be wo continuous real value functions on [a, b] and c ∈ (a, b) such that f(x) < g(x) ∀ x∈ [a, c) and g(x) < f(x) ∀ x∈ (c, b] with f (c) = g TS inter definite integration 12(c). area of the region bounded by y = f (x), y = g(x), and the lines x = a, x = b is given by TS inter definite integration 11

 

(vi) Let f: [a, b] → R and g: [a, b] → R be continuous functions. Suppose that, there exist points x1, x2 ∈ (a, b) TS inter definite integration 16with x1< x2 such that f(x1) = g(x1) and f(x2) = g(x2) and f(x) ≥ g(x) ∀ x ∈ (x1, x2). Then the area of the region bounded by the curves by y = f (x), y = g(x), and the lines x = x1, x = x2 is given byTS inter definite integration 13 and if f(x) ≤ g(x) ∀ x ∈ (x1, x2). ThenTS inter definite integration 14In either case, area is TS inter definite integration 15.


8. DIFFERENTIAL EQUATIONS

Differential equation: An equation involving one dependent variable and its derivative with respect to one or more independent variables is called a ‘Differential equation’.

If a differential equation contains only one independent variable, then it is called ‘an ordinary differential equation and if it contains more than one independent variable, then it is called ‘a partial differential equation’.

Degree of the differential equation:  If a differential can be expressed as a polynomial equation in the derivatives occurring in it using the algebraic operations such that the exponent of each of the derivatives is the least, then the large exponent of the highest order derivative in the equation is called the degree of the differential equation.

Otherwise, the degree is not defined for a differential equation.

Order of differential equation: The order of the differential equation is the order of the highest derivative occurring in it.  

Note: The general form of an ordinary differential equation of nth order is TS inter differential equation 1

 

Formation of the differential equation: suppose that an equation y = ϕ (x, α1, α2, …, αn) where α1, α2, …, αn are parameters, representing a family of curves is given. Then successively differentiating the above equation, a differential equation of the form  TS inter differential equation 2

We know that y = mx is a straight line passing through the origin

m = dy/ dx ⟹ TS inter differential equation 3

Solving differential equations:

1. Variable separable method:

If a given differential equation can be put in the form of f(x) dx + g(y) dy = 0 then its solution can be obtained by integrating each of them. This method is called the variable separable method.

Ex: xdy – y dx = 0 can be written as dx/x =dy/y

By integrating we get ∫dx/x = ∫dy/y

⇒ logx = logy + logc

⇒ logx = log yc

∴ x = yc is the required solution

2. Homogeneous Differential Equation:

Homogeneous function: – A function f (x, y) of two variables x and y is said to be a homogeneous function of degree n, if f(kx, ky) = kn f(x, y)  for all values of k for which both sides of the above are meaningful.

Homogeneous Differential Equation: – A differential equation of the formTS inter differential equation 4 where f (x, y) and g (x, y) are homogeneous functions of x and y of the same degree is called a homogeneous differential equation.

Method of solving the homogeneous differential equation: –

Consider the homogeneous equation TS inter differential equation 4  …… (1)

where f (x, y) and g (x, y) are homogeneous functions of x and y of the same degree.

f (x, y) = xn ϕ (y/x) and g(x) xn ψ (y/x)

eqn (1) becomes TS inter differential equation 5 ……. (2)

put y = vx. Then TS inter differential equation 6 ……. (3)

from (2) and (3)

TS inter differential equation 7

This can be solved by the variable separable method.

3. Non-Homogeneous Differential Equations:

The differential equation of the formTS inter differential equation 8 where a, b, c, a’, b’, c’ are constants and c and c’ are not both zero are called non-homogeneous equations. Reduce the above equation to a homogeneous equation by suitable substitution for x and y.

Case(i): –

 Suppose that b = – a’. then TS inter differential equation 8   becomes TS inter differential equation 9

⇒ (a’x + b’y + c’) dy – (ax – a’y + c) dx = 0

⇒ a’(x dy + y dx) + b’ y dy – ax dx + c’ dy – cdx = 0

By integrating we get

a’ xy + b’ y2/2 – a x2/2 + c’y – cx = k

which is a required solution.

Case(ii): –

Suppose that TS inter differential equation 10 Then TS inter differential equation 8 becomesTS inter differential equation 11

Put ax + by = v, then

TS inter differential equation 12

this can be solved by the variable separable method.

Case(iii): –

 Suppose that b ≠ – a’ and a/a’ ≠ b/b’, then taking x = X + h, y = Y + k, where X and Y are variables and h, k are constants. We get TS inter differential equation 13 . HenceTS inter differential equation 8…..(i)    becomes

TS inter differential equation 14

Now choose constants h and k such that

ah + bk + c = 0

a’h + b’k +c’ = 0

by solving above equations, we get h. k values

Hence, equation (1) becomes TS inter differential equation 15

This is the homogeneous equation in X and Y and then solve by the homogeneous method by putting Y = VX.

3. Linear Differential Equations:

A differential equation of the formTS inter differential equation 16   = R,  where P1, P2, …, Pn and R are constants or functions x only, is said to be a linear differentiable equation of nth order.

Method of solving the linear differentiable equation of 1st order: –

The linear differentiable equation of the first order isTS inter differential equation 17

Multiplying both sides of (1) byTS inter differential equation 18, we get

TS inter differential equation 19

 


My App: Click Here


Visit my Youtube Channel: Click on Below Logo