TS 10th Class Maths Concept (T/M)

10 వ తరగతి గణితం ముఖ చిత్రం

10 వ తరగతి గణితం నోట్స్

 

10 వ తరగతి గణిత శాస్త్రాన్ని  అధ్యయనం చేయడం అంటే, పిల్లలు తమ స్వంత అభ్యాసానికి బాధ్యత వహిస్తారు మరియు సమస్యలను పరిష్కరించడానికి భావనలను వర్తింపజేయడం నేర్చుకుంటారు.

ఈ విషయం   . ఈ గమనికలు విద్యార్థులకు గణితంను ఇస్టపడేలా   మరియు భయాన్ని అధిగమించడానికి సహాయపడతాయి.


1. వాస్తవ సంఖ్యలు

మనం ముందు తరగతులలో వివిధ రకాలైన సంఖ్యలను గురించి తెలుసుకున్నాము .అంటే సహజ సంఖ్యలు, పూర్ణాంకాలు, పూర్ణ సంఖ్యలు, కరణీయ , అకరణీయ సంఖ్యలను గురించి నేర్చుకున్నాము .

అకరణీయ సంఖ్యలు : p,q లు పూర్ణ  సంఖ్య లై  , q ≠ 0 అయిన సందర్భం లో  gif రూపం లో రాయగల సంఖ్య లను  అకరణీయ సంఖ్యలు అంటారు . దీనిని Q తో సూచిస్తారు .

ఉదా :- gif మొదలగునవి.

కరణీయ సంఖ్యలు gif  రూపం లో రాయలేని సంఖ్యలను కరణీయ సంఖ్యలు అంటారు . దీనిని  QI  లేదా S  తో సూచిస్తారు .

ఉదా :-gif మొదలగునవి.

వాస్తవ సంఖ్యలు : అకరణీయ , కరణీయ సంఖ్యల సమూహాన్ని వాస్తవ సంఖ్యలు అంటారు .

కింది పటములో మనం వీటిని చూడ వచ్చు.

వాస్తవ సంఖ్యలు

 

భాగహార శేష నిధి :

a, b అనే ధన పూర్ణాంకాలు ఇచ్చినప్పుడు a = b q + r, 0≤ r <b అయ్యే విధంగా ఏకైక జత పూర్ణాంకాలు q ,r లు వ్యవస్తితం అవుతాయి.

ఇది అందరికి తెలిసినప్పటికీ యూక్లిడ్ పుస్తకాల సంకలనం లోని 7 వ పుస్తకం లో మొట్టమొదటగా నమోదు చేయడం జరిగింది.

ఈ భాగహార శేషనిధి మీద యూక్లిడ్ భాగహార శేష  నిధి ఆధారపడి ఉంది.

యూక్లిడ్ భాగహార శేషనిధి  కేవలం ధన పూర్ణ సంఖ్యల పైనే నిర్వచించ బడినా , దానిని అన్ని శూన్యేతర పూర్ణ సంఖ్యలకు అనువర్తింప చేయవచ్చు .  

యూక్లిడ్ భాగహార శేషనిధి ఉపయోగించి గ . సా . భా ను కనుక్కోవడం :

రెండు ధన పూర్ణ సంఖ్యల సామాన్య కారాణాంకాలలోని అతి పెద్ద కారణాo న్కాన్ని గ .సా. భా అంటారు .

ఉదా:- 9 , 24  ల గ . సా .భా కనుక్కోవడం

దీనిని  24 = 9×2 + 18 గా రాయవచ్చు

division

9 , 24  కన్నా పెద్దది   కావున 24 ను 9 చే భాగిస్తే శేషం 6 వస్తుంది

పై దానిలో ని  భాజకం 9  మరియు  6  పై  యూక్లిడ్ న్యాయాన్ని అనువర్తింప చేయగా

9 = 6 ×1  + 3  గా రాయవచ్చు

 పై దానిలో ని  భాజకం 6  మరియు  శేషం 3  పై  యూక్లిడ్ న్యాయాన్ని అనువర్తింప చేయగా  దానిని         

6  = 3 ×2   + 0   గా రాయవచ్చు

పై దాని లో శేషం సున్నా  వచ్చింది

కావున 9 , 24  ల గ . సా .భా 3 అవుతుంది.

ప్రాథమిక అంకగణిత సిద్ధాంతం :

ప్రతి సంయుక్త సఖ్యను ప్రదానానంకముల లబ్దంగా రాయవచ్చు  మరియు ప్రధాన కారణాంకాల క్రమం ఏదైనప్పటికీ ఈ కారణాంకాల లబ్దం ఏకైకం .

ఒక సంయుక్త సంఖ్య x  ను  x = p 1  p 2 ….p  n  అని రాయవచ్చు . దీనిలో p 1 , p 2, …., p  n ఆరోహణ క్రమం లో రాయబడిన ప్రధానాంకాలు , అంటే     p 1≤  p 2 ≤….≤  p  n.  

ఈ సందర్భం లో ఒకే రకమైన ప్రదానంకములు వాడినచో వాటిని ప్రధానాంకాల ఘా తాoకాలుగా రాస్తాము . ఒకసారి మనం ఈ సంఖ్యలు ఆరోహణ క్రమంలో ఉన్నాయని భావిస్తే . అప్పుడు లబ్దం ఏకైకం .

ఉదా :- 360 = 3×3×2× 2 × 2 × 5 = 32 × 23  × 5  

ప్రధాన కారణాంకాల లబ్ద పద్ధతి ద్వారా గా. సా . భా  మరియు  కా . సా . గు  కనుక్కోవడం;

9 , 24 ల గ . సా .భా  మరియు కా. సా . గు. కనుక్కోవడం

  9 యొక్క ప్రధాన కారణాంకాలు = 3 × 3 =  3

  24 యొక్క ప్రధాన కారణాంకాలు = 2 × 2 ×2 × 3 = 23 ×31  

  9 , 24  ల గ . సా .భా  = 31  = 3 ( సంక్యల యొక్క సామాన్య  కారణాంకంల కనిష్ఠ ఘాతాల లబ్ధం )

 9 , 24  ల  కా. సా . గు.= 32× 23 = 9×8 = 72 (సంఖ్యల యొక్క కారణాంకంల గరిష్ఠ ఘాతాల లబ్ధం)

అకరణీయ సంఖ్యలు మరియు వాటి దశాంశ రూపాలు :

x అనేది ఒక అకరణీయ సంఖ్య మరియు దీని ధశాంశ రూపం ఒక అంతమయ్యే దశాంశము ,అయినప్పుడు x ను p, q లు పరస్పర ప్రధా నాంకములు అయివున్న p /q రూపం లో వ్యక్త పరచవచ్చు . మరియు q యొక్క ప్రధాన కారాణాంకాల లబ్దం 2m 5 n  అగును ,  n ,m లు  ఋణేతర పూర్ణ సంఖ్యలు .

పై దాని విపర్యయం ఇలా ఉంటెుంది

• n ,m లు ఋణేతర పూర్ణ సంఖ్యలు  మరియు q యొక్క ప్రధాన కారాణాంకాల లబ్దం 2m 5 n  కలిగినటువంటి అకరణీయ సంఖ్య x = p /q అయిన,  xయొక్క  ధశాంశ రూపం ఒక  అంతమయ్యే దశాంశము  అగును ,

terminating decimal

• n ,m లు ఋణేతర పూర్ణ సంఖ్యలు మరియు q యొక్క ప్రధాన కారాణాంకాల లబ్దం 2m 5 n  రూపంలో లేకుంటే ,  అకరణీయ సంఖ్య x = p /q అయిన,  xయొక్క  ధశాంశ రూపం ఒక  అంతంకాని  దశాంశము  అగును.

ఉదా :-

non terminatini recurring decimal

కరణీయ సంఖ్యలు :-

•   p, q లు కరణీయ సంఖ్యలు మరయు q ≠ 0 అయిన  p /q రూపం లో రాయలేని  సంఖ్యలను కరణీయ సంఖ్యలు అంటారు .

• ప్రతీ కరణీయ సంఖ్య ధశాంశ రూపం ఒక అంతంకాని  దశాంశము  అగును.

ప్రవచనం: p అనేది ఒక ప్రధాన సంఖ్య మరియు a ఒక ధనపూర్ణ సంఖ్య అయితే “ a2 ను p  నిశ్శేషంగా భాగిస్తే a ను p  నిశ్శేషంగాభాగిస్తుంది.

ఘాతాలు :

• a n  ను ఘాతాంక రూపం అంటాము. a ను భూమి అని ,  n  ను ఘాతము అని  అంటారు.

(i)    \dpi{100} \large a^{m }\, \times a^{n} = a^{m + n}gif      (ii) gif      \dpi{100} \large \frac{a^{m}}{a^{n}} = a^{m - n}    (iii) gif   ( am)n = amn    (iv)   a0 = 1               gif

సంవర్గమానాలు:-

x మరియు aలు ధనపూర్ణసంఖ్యలై a ≠1 అయివుండి ax = n అయిన x = {{log_{a}}^{N}} అగును. 

సంవర్గమాన న్యాయాలు

 

Leave a Comment

Your email address will not be published. Required fields are marked *